Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T10:28:33.940Z Has data issue: false hasContentIssue false

Airspace sectorization with constraints

Published online by Cambridge University Press:  15 October 2005

Huy Trandac
Affiliation:
College of Information Technology, Can Tho University, Viet Nam.
Philippe Baptiste
Affiliation:
CNRS LIX, École Polytechnique, 91128 Palaiseau, France; Philippe.Baptiste@polytechnique.fr
Vu Duong
Affiliation:
Eurocontrol Experimental Centre, Centre de Bois des Bordes, BP15, 91222 Bretigny sur Orge Cedex, France.
Get access

Abstract

We consider the Airspace Sectorization Problem (ASP) in which airspacehas to be partitioned into a given number of sectors, each of whichbeing assigned to a team of air traffic controllers. The objective isto minimize the coordination workload between adjacent sectors whilebalancing the total workload of controllers. Many specificconstraints, including both geometrical and aircraft relatedconstraints are taken into account. The problem is solved in aconstraint programming framework. Experimental results show that ourapproach can be used on real life problems.

Type
Research Article
Copyright
© EDP Sciences, 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

S. Barbara, A tutorial on constraint programming. Technical Report 95.14, School of Computer Studies, University of Leeds (1995).
S.T. Barnard and H.D. Simon, A fast multilevel implementation of recursive spectral bisection for partitioning unstructured problems, in Proc. of The sixth SIAM conference on Parallel Processing for Scientific Computing (1993) 711–718.
R. Bartak, Online guide to constraint programming, http://ktilinux.ms.mff.cuni.cz/~bartak/constraints/ (1998).
Y. Caseau, F.X. Josset and F. Laburthe, CLAIRE: Combining sets, search and rules to better express algorithms, in Proc. of the 16th International Conference on Logic Programming, Las Cruces, New Mexico – USA, Nov.–Dec. (1999).
J. Chen, Computational geometry: Methods and applications. Department Computer Science, Texas A&M University (February 1996).
Colmerauer, A., An introduction to PROLOG-III. Commun. ACM 33 (1990) 6990. CrossRef
A. Colmerauer, Les bases de Prolog IV. Technical report, Laboratoire d'Informatique de Marseille (1996).
D. Delahaye, Optimisation de la sectorisation de l'espace aérien par algorithmes génétiques. Ph.D. Thesis, École Nationale Supérieure de l'Aéronautique et de l'Espace (1995).
D. Delahaye, J.M. Alliot, M. Schoenauer and J.L. Farges, Genetic algorithms for automatic regrouping of air traffic control sectors, in Proc. of the Fourth International Conference on Evolutionary Programming, MIT Press (March 1995) 657–672.
D. Delahaye, M. Schoenauer and J.M. Alliot, Airspace sectoring by evolutionary computation, in IEEE International Congress on Evolutionary Computation (1998).
C.M. Fiduccia and R.M. Mattheyses, A linear time heuristic for improving network partitions, in Proc. of 19th ACM/IEEE Design Automation Conference (1982) 175–181.
P.O. Fjallstrom, Algorithms for graph partitioning: A survey. Linkoping Electronic Articles in Computer and Information Science 3 (1998).
M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman & Co. (1979).
Gilbert, J.R., Miller, G.L. and Teng, S.H., Geometric mesh partitioning: Implementation and experiments. SIAM J. Sci. Comput. 19 (1998) 20912110. CrossRef
D.E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley (1989).
Hendrickson, B. and Leland, R., An improved spectral graph partitioning algorithm for mapping parallel computations. SIAM J. Sci. Comput. 16 (1995) 452469. CrossRef
B. Hendrickson and R. Leland, A multilevel algorithm for partitioning graphs, in Proc. of the 1995 ACM/IEEE Conference on Supercomputing, San Diego, California, USA, ACM Press (1995).
Karypis, G. and Kumar, V., A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J. Sci. Comput. 20 (1998) 359392. CrossRef
Karypis, G. and Kumar, V., Multilevel k-way partitioning scheme for irregular graphs. Journal of Parallel and Distributed Computing 48 (1998) 96129. CrossRef
B.W. Kernighan and S. Lin, An efficient heuristic procedure for partitionning graphs. BELL System Technical Journal (February 1970) 291–307.
F. Laburthe, CHOCO – A Constraint Programming kernel for solving combinatorial optimization problems (2002).
F. Laburthe and the OCRE group, CHOCO: Implementing a CP kernel, in CP00 Post Conference Workshop on Techniques for Implementing Constraint programming Systems (TRICS), Singapore (2000).
S. Manuel, M.L. José, M.B. Victor and M.R. José, Genes: a genetic algorithms and fast time simulation, in 3rd ATM R&D Symposium, Spain (2002).
A. Okabe et al., Spatial Tessellations: Concepts and Applications of Voronoi Diagrams. New York, Wiley (1992).
J.-F. Puget, A C++ implementation of CLP, in Proc. of the Second Singapore International Conference on Intelligent Systems, Singapore (1994).
Tarjan, R.E., Depth-first search and linear graph algorithms. SIAM J. Comput. 1 (1972) 146160. CrossRef
M. Wallace, S. Novello and J. Schimpf, Eclipse: A platform for constraint logic programming. Technical report, IC-Parc, Imperial College, London (1997).