Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-13T06:57:03.169Z Has data issue: false hasContentIssue false

Asymptotic analysis of the trajectoriesof the logarithmic barrier algorithm without constraint qualifications

Published online by Cambridge University Press:  17 May 2008

A. El Afia
Affiliation:
Université Mohammed V, Souisi, ENSIAS, Rabat, Maroc; elafia@ensias.ma
A. Benchakroun
Affiliation:
Université de Sherbrooke, Dép. d'informatique, Canada; Abdelhamid.Benchakroun@usherbrooke.ca
J.-P. Dussault
Affiliation:
Université de Sherbrooke, Dép. d'informatique, Canada; Jean-Pierre.Dussault@usherbrooke.ca
K. El Yassini
Affiliation:
Université Moulay Ismail, Faculté des Sciences à Meknès, Maroc; Khalid.ElYassini@usherbrooke.ca
Get access

Abstract

In this paper, we study the differentiability of the trajectories of the logarithmic barrier algorithm for a nonlinearprogram when the set Λ* of the Karush-Kuhn-Tucker multiplier vectors is emptyowing to the fact that the constraint qualifications are not satisfied.


Type
Research Article
Copyright
© EDP Sciences, ROADEF, SMAI, 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

A. El Afia, A. Benchakroun, and J.-P. Dussault, Asymptotic Analysis of the trajectories of the logarithmic barrier Algogarith without differentiable objective function, IJPAM 9 (2003) 99–123.
A. El afia, Comportement de la barrière logarithmique au voisinage d'une solution dégénérée. Thèse de doctorat, Université de Sherbrooke, Sherbrooke (1999).
Broyden, C.G. and Attia, N.F., Penalty functions, Newton's method, and quadratic Programming. J. Optim. Theor. Appl. 58 (1988) 377381. CrossRef
J.-P. Dussault, Numerical Stability and Efficiency of Penality Algorithms. 32 (1995) 296–317.
A.V. Fiacco and G.P. McCormick, Programming under Nonlinear Constraints by Unconstrained Minimization: A Primal-Dual Method, Technical Paper RACTR-96, Research Analysis Corporation, Mc Lean, Va. (1963).
A.V. Fiacco and G.P. McCormick, Nonlinear Programming: Sequential Unconstrained Minimization Techniques, SIAM, Philadelphia (1990).
F. John, Extremum problems with inequalities as subsidiary conditions, in: Studies and essays: Courant anniversary volume, Interscience, New York (1948) 187–204.
H.W. Kuhn and A.W. Tucker, Non-Linear Programming, in Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, edited by J. Neyman, University of California Press, Berkeley (1951) 481–493.
Mifflin, R., Convergence Bounds For Nonlinear Programming Algorithms. Math. Program. 8 (1975) 251271. CrossRef