Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-11T02:10:15.209Z Has data issue: false hasContentIssue false

Calculs d'invariants primitifs de groupes finis

Published online by Cambridge University Press:  15 August 2002

Ines Abdeljaouad*
Affiliation:
CalFor - LIP6, Université Paris VI, 4 place Jussieu, 75252 Paris Cedex 05, France; Ines.Abdeljaouad@lip6.fr.
Get access

Abstract

We introduce in this article a new method to calculate all absolute andrelatif primitive invariants of finite groups. This method is inspiredfrom K. Girstmair which calculate an absolute primitive invariant ofminimal degree.Are presented two algorithms, the first one enable us to calculate allprimitive invariants of minimal degree, and the second one calculate allabsolute or relative primitive invariants with distincts coefficients. Thiswork take place in Galois Theory and Invariant Theory.

Type
Research Article
Copyright
© EDP Sciences, 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

I. Abdeljaouad, Calculs d'invariants primitifs minimaux et implantation en Axiom, Mémoire de stage, DEA Algorithmique (1996). Disponible sur la page web du Projet Galois du GDR MEDICIS : http://medicis.polytechnique.fr/medicis/projetGalois
I. Abdeljaouad, Package PrimitiveInvariant sous GAP, (1997). Disponible sur la page web du Projet Galois du GDR MEDICIS : http://medicis.polytechnique.fr/medicis/projetGalois
J.M. Arnaudiès and A. Valibouze, Lagrange resolvents. J. Pure Appl. Algebra (1997).
Berwick, E.H., The condition that a quintic equation should be soluble by radicals. Proc. London Math. Soc. 14 (1915) 301-307. CrossRef
Berwick, E.H., On soluble sextic equations. Proc. London Math. Soc. 29 (1929) 1-28. CrossRef
A. Cayley, On a new auxiliary equation in the theory of equation of fifth order. Philos. Trans. Roy. Soc. London, CLL (1861).
A. Colin, Formal computation of Galois groups with relative resolvents, AAECC'95, Springer Verlag, Lecture Notes in Computer Science 948 (1995) 169-182.
A. Colin, Solving a system of algebraic equations with symmetries. J. Pure and Appl. Algebra (1996).
H.O. Foulkes, The resolvents of an equation of seventh degree. Quart. J. Math. Oxford Ser. (1931) 9-19.
G.A.P. Groups, algorithms and programming, Martin Schönert and others, Lehrstuhl D für Mathematik, Rheinisch-Westfälische Technische Hochoschule, Aachem, gap@samson.math.rwth-aachen.de (1993).
Girstmair, K., On invariant polynomials and their application in field theory. Maths of Comp. 48 (1987) 781-797. CrossRef
C. Jordan, Traité des substitutions et des équations algébriques, Gauthier-Villard, Paris (1870).
G. Kemper, Calculating invariant rings of finite groups over arbitrary fields. J. Symbolic Computation (1995).
F. Lehobey, Resolvent computation by resultants without extraneous powers. J. Pure Appl. Algebra (1999) à paraître.
Luther, E., Ueber die factoren des algebraisch lôsbaren irreducible Gleichungen vom sechsten Grade und ihren Resolvanten. Journal für Math. 37 (1848) 193-220.
N. Rennert and A. Valibouze, Modules de Cauchy, Rapport interne LIP6 (1997).
L. Soicher, The computation of the Galois groups, Thesis in departement of computer science, Concordia University, Montreal, Quebec, Canada (1981).
Stauduhar, R.P., The computation of Galois groups. Math. Comp. 27 (1973) 981-996. CrossRef
B. Sturmfels, Algorithms in invariant theory, Wien, New-York: Springer Verlag (1993).
A. Valibouze, Groupes de Galois jusqu'en degré 7. Rapport interne LIP6 (1997).
A. Vandermonde, Mémoire de l'Académie des Sciences de Paris (1771).
R.L. Wilson, A method for the determination of the Galois group, Amer. Math. Soc. (1949).