Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-14T19:36:34.506Z Has data issue: false hasContentIssue false

An upper bound for transforming self-verifying automata into deterministic ones

Published online by Cambridge University Press:  25 September 2007

Ira Assent
Affiliation:
RWTH Aachen, Lehrstuhl für Informatik IX, Ahornstr. 55, 52074 Aachen, Germany; assent@informatik.rwth-aachen.de
Sebastian Seibert
Affiliation:
ETH Zürich, Department Informatik, Informationstechnologie und Ausbildung, ETH Zentrum, 8092 Zürich, Switzerland; sseibert@inf.ethz.ch
Get access

Abstract

This paper describes a modification of the power set construction for the transformation of self-verifying nondeterministic finite automata to deterministic ones. Using a set counting argument, the upper bound for this transformation can be lowered from $2^n$ to $O(\frac{2^n}{\sqrt{n}}).$

Type
Research Article
Copyright
© EDP Sciences, 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

J.E. Hopcroft and J.D. Ullman, Introduction to Automata Theory, Languages and Computation. Addison-Wesley, Reading, MA (1979).
Hromkovič, J. and Schnitger, G., On the Power of Las Vegas for One-way Communication Complexity, OBDDS, Finite Automata. Inform. Comput. 169 (2001) 284296. CrossRef
Lupanov, O.B., A comparision of two types of finite automata. Problemy Kibernetiki 9 (1963) 321326 (Russian).
A.R. Meyer and M.J. Fischer, Economy of Description by Automata, Grammars, and Formal Systems, in Proc. IEEE 12th Ann. Symp. on Switching and Automata Theory 1971, 188–191.
Moore, F.R., On the bounds for state-set size in the proofs of equivalence between deterministic, nondeterministic and two-way finite automata. IEEE Trans. Comput. 20 (1971) 12111214. CrossRef