Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2025-01-05T01:02:35.189Z Has data issue: false hasContentIssue false

Balances and Abelian Complexity of a Certain Class of Infinite Ternary Words

Published online by Cambridge University Press:  20 July 2010

Ondřej Turek*
Affiliation:
Laboratory of Physics, Kochi University of Technology, Tosa Yamada, Kochi 782-8502, Japan; ondrej.turek@kochi-tech.ac.jp
Get access

Abstract

A word u defined over an alphabet $\mathcal A$ is c-balanced (c$\mathbb N$) if for all pairs of factors v, w of u of the same length and for all letters a$\mathcal A$, the difference between the number of letters a in v and w is less or equal to c. In this paper we consider a ternary alphabet $\mathcal A$ = {L, S, M} and a class of substitutions $\varphi_p$ defined by $\varphi_p$(L) = LpS, $\varphi_p$(S) = M, $\varphi_p$(M) = Lp–1S where p> 1. We prove that the fixed point of $\varphi_p$, formally written as $\varphi_p^\infty$(L), is 3-balanced and that its Abelian complexity is bounded above by the value 7, regardless of the value of p. We also show that both these bounds are optimal, i.e. they cannot be improved.

Type
Research Article
Copyright
© EDP Sciences, 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adamczewski, B., Codages de rotations et phénomènes d'autosimilarité. J. Théor. Nombres Bordeaux 14 (2002) 351386. CrossRef
Adamczewski, B., Balances for fixed points of primitive substitutions. Theoret. Comput. Sci. 307 (2003) 4775. CrossRef
Ľ. Balková, E. Pelantová and Š. Starosta, Sturmian Jungle (or Garden?) on Multiliteral Alphabets. RAIRO: Theoret. Informatics Appl (to appear).
Ľ. Balková, E. Pelantová and O. Turek, Combinatorial and Arithmetical Properties of Infinite Words Associated with Quadratic Non-simple Parry Numbers. RAIRO: Theoret. Informatics Appl. 41 3 (2007) 307–328. CrossRef
Berthé, V. and Tijdeman, R., Balance properties of multi-dimensional words. Theoret. Comput. Sci. 273 (2002) 197224. CrossRef
J. Cassaigne, Recurrence in infinite words, in Proc. STACS, LNCS Dresden (Allemagne) 2010, Springer (2001) 1–11.
Cassaigne, J., Ferenczi, S. and Zamboni, L.Q., Imbalances in Arnoux-Rauzy sequences. Ann. Inst. Fourier 50 (2000) 12651276. CrossRef
Coven, E.M. and Hedlund, G.A., Sequences with minimal block growth. Math. Syst. Th. 7 (1973) 138153. CrossRef
J. Currie and N. Rampersad, Recurrent words with constant Abelian complexity. Adv. Appl. Math. doi:10.1016/j.aam.2010.05.001 (2010). CrossRef
Fabre, S., Substitutions et β-systèmes de numération. Theoret. Comput. Sci. 137 (1995) 219236. CrossRef
Frougny, C., Gazeau, J.P. and Krejcar, J., Additive and multiplicative properties of point-sets based on beta-integers. Theor. Comp. Sci. 303 (2003) 491516. CrossRef
K. Klouda and E. Pelantová, Factor complexity of infinite words associated with non-simple Parry numbers. Integers – Electronic Journal of Combinatorial Number Theory (2009) 281–310.
M. Lothaire, Algebraic combinatorics on words. Cambridge University Press (2002).
Morse, M. and Hedlund, G.A., Symbolic dynamics. Am. J. Math. 60 (1938) 815866. CrossRef
Morse, M. and Hedlund, G.A., Symbolic dynamics II. Sturmian Trajectories. Am. J. Math. 62 (1940) 142. CrossRef
Richomme, G., Saari, K., Zamboni, L. Q., Balance and Abelian Complexity of the Tribonacci word. Adv. Appl. Math. 45 (2010) 212231. CrossRef
G. Richomme, K. Saari, L. Q. Zamboni, Abelian Complexity in Minimal Subshifts. J. London Math. Soc. (to appear).
W. Thurston, Groups, tilings and finite state automata. AMS Colloquium Lecture Notes (1989).
O. Turek, Balance properties of the fixed point of the substitution associated to quadratic simple Pisot numbers. RAIRO: Theoret. Informatics Appl. 41 2 (2007) 123–135. CrossRef
Vuillon, L., Balanced words. Bull. Belg. Math. Soc. Simon Stevin 10 (2003) 787805.