Article contents
Balances and Abelian Complexity of a Certain Class of Infinite Ternary Words
Published online by Cambridge University Press: 20 July 2010
Abstract
A word u defined over an alphabet $\mathcal A$ is c-balanced (c∈$\mathbb N$) if for all pairs of factors v, w of u of the same length and for all letters a∈$\mathcal A$, the difference between the number of letters a in v and w is less or equal to c. In this paper we consider a ternary alphabet $\mathcal A$ = {L, S, M} and a class of substitutions $\varphi_p$ defined by $\varphi_p$(L) = LpS, $\varphi_p$(S) = M, $\varphi_p$(M) = Lp–1S where p> 1. We prove that the fixed point of $\varphi_p$, formally written as $\varphi_p^\infty$(L), is 3-balanced and that its Abelian complexity is bounded above by the value 7, regardless of the value of p. We also show that both these bounds are optimal, i.e. they cannot be improved.
- Type
- Research Article
- Information
- Copyright
- © EDP Sciences, 2010
References
- 7
- Cited by