Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-14T17:17:55.551Z Has data issue: false hasContentIssue false

Multiple-Precision Correctly rounded Newton-Cotes quadrature

Published online by Cambridge University Press:  24 April 2007

Laurent Fousse*
Affiliation:
Univ. Nancy I/LORIA, 615 rue du Jardin Botanique, 54602 Villers-lès-Nancy Cedex, France; laurent@komite.net
Get access

Abstract

Numerical integration is an important operation for scientific computations. Although the different quadrature methods have been well studied from a mathematical point of view, the analysis of the actual error when performing the quadrature on a computer is often neglected. This step is however required for certified arithmetics.
We study the Newton-Cotes quadrature scheme in the context of multiple-precision arithmetic and give enough details on the algorithms and the error bounds to enable software developers to write a Newton-Cotes quadrature with bounded error.

Type
Research Article
Copyright
© EDP Sciences, 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

D.H. Bailey and X.S. Li, A comparison of three high-precision quadrature schemes, in Proceedings of the RNC'5 conference (Real Numbers and Computers) (September 2003) 81–95. http://www.ens-lyon.fr/LIP/Arenaire/RNC5.
C. Batut, K. Belabas, D. Bernardi, H. Cohen and M. Olivier, User's Guide to PARI/GP (2000). ftp://megrez.math.u-bordeaux.fr/pub/pari/manuals/users.pdf.
P.J. Davis and P. Rabinowitz, Methods of numerical integration. Academic Press, New York, 2nd edition (1984).
J. Demmel and Y. Hida, Accurate floating point summation. http://www.cs.berkeley.edu/ demmel/AccurateSummation.ps (May 2002).
W.J. Ellison and M. Mendès-France, Les nombres premiers. Actualités Scientifiques et Industrielles 1366 (1975).
J.-M. Chesneaux F. Jezequel and M. Charikhi, Dynamical control of computations of multiple integrals. SCAN2002 conference, Paris (France) (23–27 September 2002).
B. Fuchssteiner, K. Drescher, A. Kemper, O. Kluge, K. Morisse, H. Naundorf, G. Oevel, F. Postel, T. Schulze, G. Siek, A. Sorgatz, W. Wiwianka and P. Zimmermann, MuPAD User's Manual. Wiley Ltd. (1996).
W. Oevel, Numerical computations in MuPAD 1.4. mathPAD 8 (1998) 58–67.
The Spaces project. The MPFR library, version 2.0.1. http://www.mpfr.org/ (2002).