Article contents
On Varieties of Literally Idempotent Languages
Published online by Cambridge University Press: 03 June 2008
Abstract
A language L ⊆A* is literally idempotent in case that ua2v ∈ L if and only if uav ∈ L, for each u,v ∈ A*, a ∈ A. Varieties of literally idempotent languages result naturally by taking all literally idempotent languages in a classical (positive) variety or by considering a certain closure operator on classes of languages. We initiate the systematic study of such varieties. Various classes of literally idempotent languages can be characterized using syntactic methods. A starting example is the class of all finite unions of $B^*_1 B^*_2\dots B^*_k$ where B1,...,Bk are subsets of a given alphabet A.
- Type
- Research Article
- Information
- RAIRO - Theoretical Informatics and Applications , Volume 42 , Issue 3: JM'06 , July 2008 , pp. 583 - 598
- Copyright
- © EDP Sciences, 2008
References
- 2
- Cited by