Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-10T13:51:02.415Z Has data issue: false hasContentIssue false

Revisiting the Balassa-Samuelson Model with Markup Variations*

Published online by Cambridge University Press:  09 January 2015

Get access

Summary

This paper addresses the role of markup variations in the transmission process of cross-sectoral productivity differential shocks and government spending shocks to the relative price of nontradables. The Balassa-Samuelson model based on frictionless goods markets predicts that a rise in the sectoral productivity ratio by 1% raises the relative price by 1% while government spending changes leave the relative price unaffected. Using panel cointegration and unit root tests applied to a panel of fifteen OECD economies, our empirical evidence does not support these implications. We find that a rise in relative productivity by 1% raises the relative price of nontradables by only 0.70% and that an increase in government spending by 1% of GDP drives up the relative price by around 1%. This paper shows that these items of evidence can be successfully explained by a two-sector open economy model in which variations in the composition of demand for nontradables give rise to endogenous changes in the markups.

Cet article s’intéresse au rôle des variations des taux de marge lors de la transmission des chocs de productivité sectorielles et de dépenses publiques au prix relatif des biens non échangeables. Le modèle de Balassa-Samuelson dans lequel le marché des biens est parfaitement concurrentiel suggère que, premièrement, le prix relatif augmente de 1% suite à une augmentation du rapport des productivités sectorielles de 1%, et que, deuxièmement, les chocs de dépenses publiques n’ont aucun impact sur le prix relatif à long terme. Appliquant les methodes de cointegration en panel à un groupe de quinze pays de l’OCDE, nos résultats empiriques rejettent ces deux prédictions. Au contraire, nous montrons qu’une hausse de la productivité relative entre les deux secteurs de 1% augmente le prix relatif des biens non échangeables de seulement 0.70% et qu’une augmentation de la part des dépenses publiques dans le PIB de 1% entraîne une hausse du prix relatif d’environ 1%. Cet article montre ensuite que ces faits empiriques peuvent être répliques par un modèle d’économie ouverte à deux secteurs dans lequel les changements de la composition de la demande en biens non échangeables génèrent des variations endogènes des taux de marge.

Type
Research Article
Copyright
Copyright © Université catholique de Louvain, Institut de recherches économiques et sociales 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Parts of this paper have circulated earlier under the title “The Balassa-Samuelson Model in General Equilibrium with Markup Variations”. The author would like to thank the Editor and two referees for their useful comments and suggestions on previous drafts of this paper, as well as Sophie Béreau, Olivier Cardi, Nelly Exbrayat, Valérie Mignon and Alain Sand for their valuable comments. The financial support from the Belgian Federal Government (Grant PAI P6/07 “Economic Policy and Finance in the Global Equilibrium Analysis and Social Evaluation”) is also acknowledged.

Université de Lorraine (BETA) and Université Catholique de Louvain (IRES), romain.restout@univ-lorraine.fr.

References

Bai, J. and Ng, S. (2002), “Determining the Number of Factors in Approximate Factor Models”, Econometrica, vol. 70(1), pp. 191221.Google Scholar
Balassa, B. (1964), “The Purchasing Power Parity Doctrine: a Reappraisal”, Journal of Political Economy, vol. 72, pp. 584596.Google Scholar
Balvers, R.J. and Bergstrand, J.H. (2002), “Government Expenditures and Equilibrium Real Exchange Rates”, Journal of International Money and Finance, vol. 21, pp. 667692.Google Scholar
Bems, R. (2008), “Aggregate Investment Expenditures on Tradable and Nontradable Goods”, Review of Economic Dynamics, vol. 4, pp. 852883.Google Scholar
Bergin, P.R. and Glick, R. (2007), “Tradability, Productivity, and International Economic Integration”, Journal of International Economics, vol. 73, pp. 128151.Google Scholar
Bergin, P.R., Glick, R. (2009), “Endogenous Tradability and some Macroeconomic Implications”, Journal of Monetary Economics, vol. 56, pp. 10861095.Google Scholar
Bergin, P.R., Glick, R. and Taylor, A.M. (2006), “Productivity, Tradability, and the Long-Run Price Puzzle”, Journal of Monetary Economics, vol. 53, pp. 20412066.Google Scholar
Blundell, R. and MaCurdy, T.E. (1999), “Labor Supply: a Review of Alternative Approaches”, in Ashebfelter, O.C. and Card, D. (eds.), Handbook of Labor Economics, vol. 3A, pp. 15591695.Google Scholar
Breitung, J. (2000), “The Local Power of Some Unit Root Tests for Panel Data”, in Baltagi, B. (ed.), Advances in Econometrics: Nonstationary Panels, Panel Cointegration and Dynamic Panels, vol. 15, pp. 161178.Google Scholar
Canzoneri, M., Cumby, R. and Diba, B. (1999), “Relative Labor Productivity and the Real Exchange Rate in the Long Run: Evidence for a Panel of OECD Countries”, Journal of International Economics, vol. 47, pp. 245266.Google Scholar
Cashin, P. and McDermott, J.C. (2003), “Intertemporal Substitution and Terms-of-Trade Shocks”, Review of International Economics, vol. 11(4), pp. 604618.Google Scholar
Cardi, O. and Miiller, G.J. (2011), “Habit Formation and Fiscal Transmission in Open Economies”, Journal of International Economics, vol. 85, pp. 256267.Google Scholar
Cardi, O. and Restout, R. (2013), “Imperfect Mobility of Labor across Sectors: a Reappraisal of the Balassa-Samuelson Effect”, BETA WP, 2013–04.Google Scholar
Chang, Y. (2002), “Nonlinear IV Unit Root Tests in Panels with Cross-Sectional Dependency”, Journal of Econometrics, vol. 110, pp. 261292.Google Scholar
Choi, I. (2001), “Unit Root Tests for Panel Data”, Journal of International Money and Finance, vol. 20, pp. 249272.Google Scholar
Choudhri, E.U. and Schembri Schembri, L.L. (2010), “Productivity, the Terms of Trade, and the Real Exchange Rate: Balassa-Samuelson Hypothesis Revisited”, Review of International Economics, vol. 18(5), pp. 924936.Google Scholar
De Gregorio, J., Giovannini, A. and Krueger, T. (1994a), “The Behavior of Nontradable Goods Prices in Europe: Evidence and Interpretation”, Review of International Economics, vol. 2, pp. 284305.Google Scholar
De Gregorio, J., Giovannini, A. and Wolf, H.C. (1994b), “International Evidence on Tradables and Nontradables Inflation”, European Economic Review, vol. 38, pp. 12251244.Google Scholar
Dixon, H. and Rankin, N. (1994), “Imperfect Competition and Macroeconomics: a Survey”, Oxford Economic Papers, vol. 46(2), pp. 171199.Google Scholar
Engel, C. (2000), “Long-run PPP May Not Hold After All”, Journal of International Economics, vol. 57, pp. 243273.Google Scholar
Froot, K.A. and Rogoff, K. (1991), “The EMS, the EMU and the Transition to a Common Currency”, in Blanchard, O. and Fischer, S. (eds.), NBER Macroeconomics Annual 1991, pp. 269327.Google Scholar
Gali, J. (1994a), “Monopolistic Competition, Business Cycles, and the Composition of Aggregate Demand”, Journal of Economic Theory, vol. 63, pp. 7396.Google Scholar
Gali, J. (1994b), “Monopolistic Competition, Endogenous Markups, and Growth”, European Economic Review, vol. 38, pp. 748756.Google Scholar
Garofalo, G.A. and Yamarik, S. (2002), “Regional Convergence: Evidence From a New State-By-State Capital Stock Series”, Review of Economics and Statistics, vol. 84(2), pp. 316323.Google Scholar
Ghironi, F. and Melitz, M.J. (2005), “International Trade and Macroeconomic Dynamics with Heterogenous Firms”, Quarterly Journal of Economics, vol. 120(3), pp. 865915.Google Scholar
Hadri, K. (2000), ‘Testing for Unit Roots in Heterogeneous Panel Data”, Econometrics Journal, vol. 3, pp. 148161.Google Scholar
Hall, R.E. (1988), “The Relation Between Price and Marginal Cost in U.S. Industry”, Journal of Political Economy, vol. 96(5), pp. 921947.Google Scholar
Im, K.S., Pesaran, M.H. and Shin, Y. (2003), “Testing for Unit Roots in Heterogeneous Panels”, Journal of Econometrics, vol. 115, pp. 5374.Google Scholar
Kakkar, V. (2003), “The Relative Price of Nontraded Goods and Sectoral Total Factor Productivity: an Empirical Investigation”, The Review of Economics and Statistics, vol. 85(2), pp. 444452.Google Scholar
Lee, J. and M-K., Tang (2007), “Does Productivity Growth Appreciates the Real Exchange rate”, Review of International Economics, vol. 15(1), pp. 164187.Google Scholar
Levin, A., Lin, CF. and Chu, C.S.J. (2002), “Unit Root Test in Panel Data: Asymptotic and Finite Sample Properties”, Journal of Econometrics, vol. 108, pp. 124.Google Scholar
Maddala, G. and Wu, S. (1999), “A Comparative Study of Unit Root Tests with Panel Data and a new test”, Oxford Bulletin of Economics and Statistics, vol. 61, pp. 631652.Google Scholar
Mark, N.C. and Sul, D. (2003), “Vector Estimation by Panel DOLS and Long-run Money Demand”, Oxford Bulletin of Economics and Statistics, vol. 65(5), pp. 655680.Google Scholar
Mazumder, S. (2013), “The Price-Marginal Cost Markup and its Determinants in U.S. Manufacturing”, Macroeconomic Dynamics, forthcoming.Google Scholar
Méjean, I. (2008), “Can Firms' Location Decisions Counteract the Balassa-Samuelson Effect”, Journal of International Economics, vol. 76, pp. 139154.Google Scholar
Morshed, A.K.M.M. and Turnovsky, S.J. (2004), “Sectoral Adjustment Costs and Real Exchange Rate Dynamics in a Two-sector Dependent Economy”, Journal of International Economics, vol. 63, pp. 147177.Google Scholar
Newey, W. and West, K. (1987), “A Simple Positive Semi-Definite, Heteroskedasticity and Autocorrelation Consistent Covariance Matrix”, Econometrica, vol. 51, pp. 703708.Google Scholar
Pedroni, P. (2000), “Fully Modified OLS for Heterogeneous Cointegrated Panels”, in Baltagi, B. (ed.), Advances in Econometrics: Nonstationary Panels, Panel Cointegration and Dynamic Panels, vol. 15, pp. 93130.Google Scholar
Pedroni, P. (2001), “Purchasing Power Parity Tests in Cointegrated Panels”, The Review of Economics and Statistics, vol. 83(4), pp. 727731.Google Scholar
Pedroni, P. (2004), “Panel Cointegration: Asymptotic and Finite Sample Properties of Pooled Time Series Tests with an Application to the PPP Hypothesis”, Econometric Theory, vol. 20, pp. 597625.Google Scholar
Pesaran, M.H. (2007), “A Simple Panel Unit Root Test In The Presence Of Cross Section Dependence”, Journal of Applied Econometrics, vol. 22(2), pp. 265312.Google Scholar
Ravn, M.O., Schmitt-Grohe, S. and Uribe, M. (2007), “Pricing to Habits and the Law of One Price”, American Economic Review, vol. 97(2), pp. 232238.Google Scholar
Roeger, W. (1995), “Can Imperfect Competition Explain the Difference between Primal and Dual Productivity Measures? Estimates for U.S. Manufacturing”, Journal of Political Economy, vol. 103(2), pp. 316330.Google Scholar
Rogoff, K. (1992), “Traded Goods Consumption Smoothing and the Random Walk Behavior of the Real Exchange Rate”, Bank of Japan Monetary and Economic Studies, vol. 10(2), pp. 129.Google Scholar
Rotemberg, J.J. and Woodford, M. (1999), “The Cyclical Behavior of Prices and Costs”, in Taylor, J.B. and Woodford, M. (eds.), Handbook of Macroeconomics, vol. 1 B, pp. 10511135.Google Scholar
Samuelson, P.A. (1964), “Theoretical Notes on Trade Problems”, Review of Economics and Statistics, vol. 46, pp. 145164.Google Scholar