Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-28T23:48:28.187Z Has data issue: false hasContentIssue false

Comparison of the environmental performance of different treatment scenarios for the main phosphorus recycling sources

Published online by Cambridge University Press:  19 October 2017

Stefan Josef Hörtenhuber*
Affiliation:
Research Institute of Organic Agriculture (FIBL) Austria, Doblhoffgasse 7/10, 1010 Vienna, Austria University of Natural Resources and Life Sciences Vienna, Department of Sustainable Agricultural Systems, Austria
Michaela Clarissa Theurl
Affiliation:
Research Institute of Organic Agriculture (FIBL) Austria, Doblhoffgasse 7/10, 1010 Vienna, Austria Institute of Social Ecology Vienna, Universitaet Klagenfurt, Schottenfeldgasse 29, 1070 Vienna, Austria
Kurt Möller
Affiliation:
Department of Fertilization and Soil Matter Dynamics, Institute of Crop Science, University of Hohenheim, Stuttgart, Germany
*
Author for correspondence: Stefan Josef Hörtenhuber, E-mail: stefan.hoertenhuber@fibl.org

Abstract

Efficient phosphorus (P) recycling from rural and urban areas is becoming an increasing issue due to the scarcity of natural P deposits. Based on a life cycle assessment (LCA), we analyzed the environmental performance of 17 different P supply and recycling approaches from urban wastes, biosolids and slaughterhouse wastes compared with the two conventional inorganic fertilizers phosphate rock and triple superphosphate. The results show that many recycled P fertilizers (RPFs; e.g., digestates from urban organic wastes, biosolids and their ashes, meat and bone meal (MBM) and its recycling products) are competitive in terms of LCA results compared with conventional P fertilizers. For each of the P recycling sources, one or more treatment options were identified, which have more favorable LCA results than the conventional references. For sewage sludge, we found that direct application of the stabilized biosolids, and incineration with application of the ash showed the lowest LCA impacts per kg P; their treatments even generated net credits from added values. The same applies for the anaerobic digestion treatment of urban organic wastes. For MBM, low environmental impacts were identified for each of the analyzed treatment options, especially for anaerobic digestion, incineration, feeding with application of manure and direct application. Similarly, low environmental impacts and net credits were found for directly applied biomass ash. Some organically based RPFs demonstrate added values, i.e., as nitrogen and potassium fertilizer effect, energy gains during the treatment, or a humus sequestration potential. If these added values are considered in the LCAs, 11 out of 17 RPFs will have advantageous effects for the majority of addressed impact categories.

Type
Research Paper
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

New address: Center for Agricultural Technology Augustenberg, Institute of Applied Crop Science, Kutschenweg 20, 76287 Rheinstetten-Forchheim, Germany.

References

Antikainen, R, Lemola, R, Nousiainen, JI, Sokka, L, Esala, M, Huhtanen, P and Rekolainen, R (2005) Stocks and flows of nitrogen and phosphorus in the Finnish food production and consumption system. Agriculture, Ecosystems and Environment 107, 287305.Google Scholar
Battini, F, Agostini, A, Boulamanti, AK, Giuntoli, J and Amaducci, S (2014) Mitigating the environmental impacts of milk production via anaerobic digestion of manure: case study of a dairy farm in the Po Valley. Science of the Total Environment 481, 196208.Google Scholar
Benke, AP, Rieps, AM, Wollmann, I, Petrova, I, Zikeli, S and Möller, K (2017) Fertilizer value and nitrogen transfer efficiencies with clover-grass ley biomass based fertilizers. Nutrient Cycling in Agroecosystems 107, 395411.Google Scholar
BGK (Bundesgütegemeinschaft Kompost e.V). (2010) Betrieb von Kompostierungsanlagen mit geringen Emissionen klimarelevanter Gase. (in German). Available at http://www.kompost.de/uploads/media/6.4_1_Kompostierungsanlagen_geringe_Emission_internet.pdf (accessed 27 December 2016).Google Scholar
Cabeza, R, Steingrobe, B, Römer, W and Claasen, N (2011) Effectiveness of recycled P products as P fertilizers, as evaluated in pot experiments. Nutrient Cycling in Agroecosystems 91, 173184.Google Scholar
Chien, SH, Prochnow, LI and Cantarella, H (2009) Recent developments of fertilizer production and use to improve nutrient efficiency and minimize environmental impacts. In Sparks, (ed). Advances in Agronomy, vol. 102, 267322. ISBN: 978-0-12-374818-8.Google Scholar
Chiew, YL, Spångberg, J, Baky, A, Hansson, P-A and Jönsson, H (2015) Environmental impact of recycling digested food waste as a fertilizer in agriculture—A case study. Resources, Conservation and Recycling 95, 114.Google Scholar
Cordell, D (2010) The story of phosphorus: sustainability implications of global phosphorus scarcity for food security. Doctoral Thesis. Collaborative PhD between the Institute for Sustainable Futures, University of Technology, Sydney (UTS) and Department of Water and Environmental Studies, Linköping University, Sweden. Linköping University Press, Linköping. ISBN 978-91-7393-440-4.Google Scholar
Cordell, D, Drangert, JO and White, S (2009) The story of phosphorus: global food security and food for thought. Global Environment Change 19, 292305.Google Scholar
Council of the European Union (1991) Council Directive 91/271/EEC of 21 May 1991 concerning urban waste-water treatment. Available at http://eur-lex.europa.eu/eli/dir/1991/271/oj (accessed 27 December 2016).Google Scholar
Desmidt, E, Ghyselbrecht, K, Zhang, Y, Pinoy, L, Van der Bruggen, B, Verstraete, W and Meesschaert, B (2015) Global phosphorus scarcity and full-scale P-recovery techniques—a review. Critical Reviews in Environmental Science and Technology 45, 336384.Google Scholar
Dobbelaere, D (2013) Statistical overview of the Animal Byproducts Industry in the EU in 2012. EFSA Journal 9, 1945.Google Scholar
Ecoinvent (2014) Ecoinvent Data V 3.1. Dübendorf, Switzerland.Google Scholar
Egle, L, Zoboli, O, Thaler, S, Rechberger, H and Zessner, M (2014) The Austrian P budget as a basis for resource optimization. Resources, Conservation and Recycling 83, 152162.Google Scholar
Eklind, Y and Kirchmann, H (2000) Composting and storage of organic household waste with different litter amendments. II: Nitrogen turnover and losses. Bioresource Technology 74(2), 125133.Google Scholar
Ewert, W, Hermanussen, O, Kabbe, C, Mêlè, C, Niewersch, C, Paillard, H, Stössel, E and Wagenbach, A (2015) Sustainable sewage sludge management fostering phosphorus recovery and energy efficiency. P-REX project. Available at http://p-rex.eu/index.php?id=11 (accessed 27 December 2016).Google Scholar
FAO (Food and Agriculture Organization of the United Nations) (2004) Protein sources for the animal feed industry. 25 pp. ISBN 92-5-105012-0. Available at ftp://ftp.fao.org/docrep/fao/007/y5019e/y5019e00.pdf (accessed 27 December 2016).Google Scholar
Fardeau, JC, Morel, C, Jahiel, M (1988) Does long contact with the soil improve the efficiency of rock phosphate? Results of isotopic studies. Fertility Research 17, 319.Google Scholar
Fricke, K and Bidlingmaier, W (2003) Phosphatpotenziale qualitativ hochwertiger organischer siedlungsabfälle. In Aachen, RWTH (Eds). Rückgewinnung von Phosphor in der Landwirtschaft und aus Abwasser, Berlin, German: Umweltbundesamt, pp. 9-19-15.Google Scholar
Funda, K, Kern, M, Raussen, T, Bergs, CG and Hermann, T (2009) Ökologisch Sinnvolle Verwertung von Bioabfällen—Anregungen für Kommunale Entscheidungsträger. Dessau. German: Umweltbundesamt.Google Scholar
Guinée, JB, Gorrée, M, Heijungs, R, Huppes, G, Kleijn, R, de Koning, A, van Oers, L, Wegener Sleeswijk, A, Suh, S, Udo de Haes, HA, de Bruijn, H, van Duin, R and Huijbregts, MAJ (2002) Handbook on Life Cycle Assessment. Operational Guide to the ISO Standards. I: LCA in Perspective. IIa: Guide. IIb: Operational Annex. III: Scientific Background. Dordrecht, The Netherlands: Kluwer Academic Publishers, 692 pp. ISBN 1-4020-0228-9.Google Scholar
Heck, A (2014) VDLUFA—QLA GmbH, rheinbach, personal communication. In Wollmann, I and Möller, K (eds). Sewage Precipitation Products. 8 pp. ISBN 978-3-03736-316-4. Available at https://shop.fibl.org/CHde/mwdownloads/download/link/id/698/?ref=1/ (accessed 04 May 2017).Google Scholar
IPCC (International Panel on Climate Change) (2006) Guidelines for National Greenhouse Gas Inventories. Available at http://www.ipcc-nggip.iges.or.jp/public/2006gl/ (accessed 27 December 2016).Google Scholar
Jeng, AS, Haraldsen, TK, Grønlund, A and Pedersen, PA (2006) Meat and bone meal as nitrogen and phosphorus fertilizer to cereals and rye grass. Nutrient Cycling in Agroecosystems 76, 183191.Google Scholar
Kalmykova, Y, Palme, U, Yu, S and Karlfeldt Fedje, K (2015) Life cycle assessment of phosphorus sources from phosphate ore and urban sinks: sewage sludge and MSW incineration fly ash. International Journal of Environmental Research 9, 133140.Google Scholar
Kluge, R (2006) Key benefits of compost use for the soil-plant system. In Ecologically Sound Use of Biowaste in the EU. Conference Proceedings. Brussels, 31 May–1 June 2006. Available at http://kompost.de/uploads/media/key_benefits_of_compost_use.pdf (accessed 27 December 2016).Google Scholar
Lampert, C, Tesar, M and Thaler, P (2011) Klimarelevanz und Energieeffizienz der energetischen und stofflichen Verwertung Biogener Abfälle. Bundesministerium für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft (Eds.; in German). Available at http://www.bmlfuw.gv.at/greentec/abfall-ressourcen/behandlung-verwertung/behandlung-biotechnisch/kompost_studien.html (accessed 27 December 2016).Google Scholar
Lampkin, NH, Foster, C and Padel, S (2000) Organic farming. In Brouwer, F and Cain, P (eds). CAP Regimes and the European Countryside: Prospects for Integration Between Agricultural, Regional and Environmental Policies. Wallingford, UK: CAB International, pp. 217234.Google Scholar
Linderholm, K, Tillman, A-M and Mattsson, JE (2012) Life cycle assessment of phosphorus alternatives for Swedish agriculture. Resources, Conservation and Recycling 66, 2739.Google Scholar
Magid, J (2013) A note on sewage sludge—risk assessments and fertilization value. Available at http://orgprints.org/22629 (accessed 27 December 2016).Google Scholar
Möller, K and Schultheiß, U (2013) Organische Handelsdüngemittel Tierischer und Pflanzlicher Herkunft für den ökologischen Landbau—Charakterisierung und Empfehlungen für die Praxis. Kuratorium für Technik und Bauwesen in der Landwirtschaft (KTBL) e.V. (Eds.), Darmstadt, Germany. 57 pp. (in German) Available at http://orgprints.org/26727/1/26727-11OE034-ktbl-schultheiss-2013-organische-handelsduenger.pdf (accessed 27 December 2016).Google Scholar
Neset, TS, Cordell, D, Mohr, S, Van Riper, F and White, S (2016) Visualizing alternative phosphorus scenarios for future food security. Frontiers Nutrition 3(47), 113. DOI: 10.3389/fnut.2016.00047.Google Scholar
Nielsen, HP (2003) LCA Food Database—Bone-, blood- and meat meal production. Available at http://gefionau.dk/lcafood/ (accessed 27 December 2016).Google Scholar
Ott, C and Rechtberger, H (2012) The European phosphorus balance. Resources, Conservation and Recycling 60, 159172.Google Scholar
Pardo, G, Moral, R, Aguilera, E and del Prado, A (2014) Gaseous emissions from management of solid waste: a systematic review. Global Change Biology 21, 13131327.Google Scholar
Pradel, M, Aissani, L, Villot, J, Baudez, J-C and Laforest, V (2016) From waste to added value product: towards a paradigm shift in life cycle assessment applied to wastewater sludge—a review. Journal of Cleaner Production 131, 6075.Google Scholar
PRé Consultants (2016) SimaPro, Life Cycle Assessment Software Package. Version 8.3. Amersfoort, The Netherlands.Google Scholar
Remy, C and Jossa, P (2015) Life Cycle Assessment of selected processes for P recovery from sewage sludge, sludge liquor, or ash. P-REX project. Available at http://p-rex.eu/index.php?id=11 (accessed 27 December 2016).Google Scholar
Schröder, JJ, Cordell, D, Smit, AL and Rosemarin, A (2010) Sustainable use of Phosphorus. Wageningen Report 357. UR: Plant Research International, Wageningen, Business Unit Agrosystems. Available at http://ec.europa.eu/environment/natres/pdf/phosphorus/sustainable_use_phosphorus.pdf (accessed 14 April 2017).Google Scholar
Schröder, JJ, Smit, AL, Cordell, D and Rosemarin, A (2011) Improved phosphorus use efficiency in agriculture: a key requirement for its sustainable use. Chemosphere 84, 822831.Google Scholar
Smil, V (2000) Phosphorus in the environment: natural flows and human interferences. Annual Review of Energy and the Environment 25, 5388.Google Scholar
Sørensen, BL, Dall, OL and Habib, K (2015) Environmental and resource implications of phosphorus recovery from waste activated sludge. Waste Management 45, 391399.Google Scholar
Steinmetz, H, Meyer, C, Reinhardt, T (2014) Interkommunales Pilotprojekt zur Phosphorrückgewinnung aus Klärschlammaschen in Baden-Württemberg. ISWA-Report. (in German).Google Scholar
Svensson, K, Odlare, M and Pell, M (2004) The fertilizing effect of compost and biogas residues from source separated household waste. The Journal of Agricultural Science 142, 461467.Google Scholar
van Dijk, KC, Lesschen, JP and Oenema, O (2016) Phosphorus flows and balances of the European Union Member States. Science of the Total Environment 542, 10781093.Google Scholar
Zoboli, O, Zessner, M and Rechberger, H (2016) Supporting phosphorus management in Austria: potential, priorities and limitations. Science of the Total Environment 565, 313323.Google Scholar