Published online by Cambridge University Press: 12 July 2010
Information about the costs and labor requirements of experimental organic farming systems designed to restore highly degraded soils in the southeastern US are needed. Enterprise budgets were prepared for the production of okra, hot pepper and a corn/winter squash intercrop under 10 different production systems, nine of which were based on organic conservation tillage. A stochastic dominance analysis was conducted to determine the relative risk efficiency of the 10 systems over the course of the experiment in terms of productivity, profitability and carbon sequestration potential. Organic conservation tillage treatments had lower tractor labor and fuel costs than conventional treatments, due to the extensive tillage required in conventional vegetable farming. The subset of organic treatments receiving compost addition without additional mulches also demonstrated increases in soil carbon, an important driver of system productivity. Organic treatments had little pest and pathogen pressure, with the exception of Fusarium wilt in some treatments receiving straw mulch. Weed suppression by straw mulches reduced labor requirements by an average of 23%. Yields in all treatments were lower than conventional yields from other studies in the region, due to the degraded nature of the soil on the study site. However, net returns on high-labor, organic crops were over US$30,000 ha−1 in some treatments. The results of this work indicate that organic, conservation tillage systems can restore soil productivity and command high returns per hectare if labor requirements can be met.