Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-27T17:19:01.442Z Has data issue: false hasContentIssue false

Effect of different cover crops on organic tomato production

Published online by Cambridge University Press:  26 February 2009

Anna Lenzi*
Affiliation:
Dipartimento di Scienze Agronomiche e Gestione del Territorio Agroforestale (DiSAT), University of Florence, Piazzale delle Cascine 18, 50144 Florence, Italy.
Daniele Antichi
Affiliation:
Dipartimento di Agronomia e Gestione dell'Agroecosistema (DAGA), University of Pisa, Via S. Michele degli Scalzi 2, 56124 Pisa, Italy.
Federica Bigongiali
Affiliation:
Dipartimento di Agronomia e Gestione dell'Agroecosistema (DAGA), University of Pisa, Via S. Michele degli Scalzi 2, 56124 Pisa, Italy.
Marco Mazzoncini
Affiliation:
Dipartimento di Agronomia e Gestione dell'Agroecosistema (DAGA), University of Pisa, Via S. Michele degli Scalzi 2, 56124 Pisa, Italy.
Paola Migliorini
Affiliation:
Dipartimento di Scienze Agronomiche e Gestione del Territorio Agroforestale (DiSAT), University of Florence, Piazzale delle Cascine 18, 50144 Florence, Italy.
Romano Tesi
Affiliation:
Dipartimento di Scienze Agronomiche e Gestione del Territorio Agroforestale (DiSAT), University of Florence, Piazzale delle Cascine 18, 50144 Florence, Italy.
*
*Corresponding author: anna.lenzi@unifi.it

Abstract

When animal husbandry is not included in organic farming systems, green manure may be crucial to preserve or increase soil organic matter content and to ensure an adequate N supply to crops. Different species, both legumes and nonlegumes, may be used as cover crops. The present research was carried out to investigate the effect of different green manure crops [oats and barley mixture (Avena sativa L. and Hordeum vulgare L.), rye (Secale cereale L.), brown mustard (Brassica juncea L.), flax (Linum usitatissimum L.), pigeon bean (Vicia faba L. var. minor)] on the production of the following tomato crop. A field trial was conducted for two cropping seasons (2003–2004 and 2004–2005) in a commercial organic farm. The yield of tomato crop was positively affected by pigeon bean, although statistically significant differences in comparison with the other treatments were observed only in 2004–2005, when the experiment was conducted in a less fertile soil. This was probably due mainly to the effect of the pigeon bean cover crop on N availability. In fact, this species, in spite of a lower biomass production than the other cover crops considered in the study, provided the highest N supply and a more evident increase of soil N-NO3. Also, cover crop efficiency, evaluated using the N recovery index, reached higher values in pigeon bean, especially in the second year. The quality of tomato fruits was little influenced by the preceding cover crops. Nevertheless, when tomato followed pigeon bean, fruits showed a lower firmness compared to other cover crops, and in the second year this was associated with a higher fruit N content.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Istituto di Servizi per il Mercato Agricolo Alimentare (ISMEA) 2005. L'Evoluzione del Mercato delle Produzioni Biologiche – l'Andamento dell'Offerta, le Problematiche della Filiera e le Dinamiche della Domanda. p. 126138.Google Scholar
2Grignani, C., Bassanino, M., Sacco, D., and Zavattaro, L. 2003. Il bilancio degli elementi nutritivi per la redazione del piano di concimazione. Rivista di Agronomia 37(2):155172.Google Scholar
3Benincasa, P., Boldrini, F., Tei, M., and Guiducci, M. 2004. N release from several green manure crops. VII ESA Congress, Copenhagen (Denmark), 11–15 July 2005.Google Scholar
4Tesi, R. and Lenzi, A. 2005. Nutrizione azotata per un'orticoltura sostenibile. Italus Hortus 12(1):5773.Google Scholar
5Sainju, U.M., Bharat, P.S., and Sidat, Y. 2002. Soil organic matter and tomato yield following tillage, cover cropping, and nitrogen fertilization. Agronomy Journal 94:594602.CrossRefGoogle Scholar
6Creamer, N.G., Bennett, M.A., Stinner, B.R., and Cardina, J. 1996. A comparison of four processing tomato production systems differing in cover crop and chemical inputs. Journal of the American Society for Horticultural Science 121(3):559568.CrossRefGoogle Scholar
7Guiducci, M., Stagnari, F., and Bonciarelli, U. 2003. Gestione della fertilità nei sistemi biologici: il ruolo dei sovesci intercalari. Atti del Workshop GRAB-IT L'Agricoltura Biologica fuori dalla nicchia: le nuove sfide, Portici (Napoli), 9–10 May 2003.Google Scholar
8Costantini, E. 1994. Sovescio e Terreno. Notiziario ERSA Friuli Venezia Giulia, Suppl. No. 2.Google Scholar
9Stivers, L.J. and Shennan, C. 1991. Meeting the nitrogen needs of processing tomatoes through winter cover cropping. Journal of Production Agriculture 4(3):330335.CrossRefGoogle Scholar
10Shennan, C. 1992. Cover crops, nitrogen cycling and soil properties in semi-irrigated vegetable production systems. HortScience 27(7):749754.CrossRefGoogle Scholar
11Tei, F., Benincasa, P., and Guiducci, M. 2001. Contenuto percentuale critico di azoto ed efficienza della concimazione azotata in pomodoro da industria. Pisa. XXXIV Convegno SIA, p. 131132.Google Scholar
12Araki, H. and Ito, M. 2004. Decrease of nitrogen fertilizer application in tomato production in no-tilled field with hairy vetch mulch. Acta Horticulturae 638:141146.CrossRefGoogle Scholar
13Whitehead, W.F. and Singh, B.P. 2005. Fresh-market tomato gas exchange, biomass, and fruit yield are similar with legume cover crops or synthetic nitrogen fertilizer. HortScience 40(1):209213.CrossRefGoogle Scholar
14Piazza, C., Foutry, H., and Reggiani, R. 2005. Sovesci e compost ‘nutrono’ il pomodoro biologico. Agricoltura luglio-agosto, p. 125126.Google Scholar
15Kumar, V., Abdul-Baki, A., Anderson, J.D., and Mattoo, A.K. 2005. Cover crop residues enhance growth, improve yield, and delay leaf senescence in greenhouse-grown tomatoes. HortScience 40(5):13071311.CrossRefGoogle Scholar
16Madden, N.M., Mitchell, J.P., Lanini, W.T., Cahn, M.D., Herrero, E.V., Park, S., Temple, S.R., and Van Horn, M. 2004. Evaluation of conservation tillage and cover crop systems for organic processing tomato production. HortTechnology 14(2):243250.CrossRefGoogle Scholar
17Smeda, R.J. and Weller, S.C. 1996. Potential of rye (Secale cereale) for weed management in transplant tomatoes (Lycopersicon esculentum). Weed Science 44(3):596602.CrossRefGoogle Scholar
18Masiunas, J.B., Weston, L.A., and Weller, S.C. 1995. The impact of rye cover crops on weed populations in a tomato cropping system. Weed Science 43(2):318323.CrossRefGoogle Scholar
19Wagger, M.G. 1989. Cover crop management and N rate in relation to growth and yield of no-till corn. Agronomy Journal 81(3):533538.CrossRefGoogle Scholar
20Schröeder, J.J., Tenholte, L., and Jansenn, B.H. 1997. Non overwintering cover crops: a significant source of N. Netherlands Journal of Agricultural Science 45(2):231248.CrossRefGoogle Scholar
21Cazzato, E., Annese, V., and Corleto, A. 2003. Azoto-fissazione in leguminose foraggere annuali in ambiente mediterraneo. Stima dell'azoto-fissazione mediante il metodo della diluizione dell'isotopo 15N. Rivista di Agronomia 37:5761.Google Scholar
22Izaurralde, R.C., Juma, N.G., McGill, W.B., Chanasyk, D.S., Pawluk, S., and Dudas, M.J. 1993. Performance of alternative cropping systems in cryoboreal-subhumid central Alberta. Journal of Agricultural Science 120(1):3341.CrossRefGoogle Scholar
23Vong, P.C., Piutti, S., Benizri, E., Slezack-Deschaumes, S., Robin, C., and Guckert, A. 2007. Water-soluble carbon in roots of rape and barley: impacts on labile soil organic carbon, arylsulphatase activity and sulphur mineralization. Plant and Soil 294(1/2):1929.CrossRefGoogle Scholar
24Ryszkowski, L., Szajdak, L., and Karg, J. 1998. Effects of continuous cropping of rye on soil biota and biochemistry. Critical Reviews in Plant Sciences 17(2):225244.CrossRefGoogle Scholar
25Snapp, S.S., Date, K.U., Kirk, W., O'Neil, C., Kremen, A., and Bird, G. 2007. Root, shoot tissues of Brassica juncea and Cereal secale promote potato health. Plant and Soil 294:5572.CrossRefGoogle Scholar
26Uprety, D.C. and Mahalaxmi, V. 2000. Effect of elevated CO2 and nitrogen nutrition on photosynthesis, growth and carbon-nitrogen balance in Brassica juncea. Journal of Agronomy and Crop Science 184(4):271276.CrossRefGoogle Scholar
27Isse, A.A., MacKenzie, A.F., Stewart, K., Cloutier, D.C., and Smith, D.L. 1999. Cover crops and nutrient retention for subsequent sweet corn production. Agronomy Journal 91(6):934939.CrossRefGoogle Scholar
28Hocking, P.J. and Pinkerton, A. 1993. Phosphorus nutrition of linseed (Linum usitatissimum L.) as affected by nitrogen supply: effects on vegetative development and yield components. Field Crops Research 32(1–2):101114.CrossRefGoogle Scholar
29Darawsheh, M.K. and Bouranis, D.L. 2006. Season-dependent fruit loading: effect on dry mass, water, and nitrogen allocation in tomato plants. Journal of Plant Nutrition 29(2):347359.CrossRefGoogle Scholar
30Reeves, D.W. 1994. Cover crops and rotations. In Hatfield, J.L. and Stewart, B.A. (eds). Crops Residue Management. Lewis Publishers, CRC Press, Boca Raton, FL, p. 125172.Google Scholar
31Quemada, M., Cabrera, M.L., and Mccracken, D.V. 1997. Nitrogen release from surface-applied cover crop residues: evaluating the CERES-N submodel. Agronomy Journal 89(5):723729.CrossRefGoogle Scholar
32Garmash, E.V. 2004. Temperature controls a dependence of barley plant growth on mineral nutrition level. Russian Journal of Plant Physiology 52(3):338344.CrossRefGoogle Scholar
33Mazzoncini, M., Barberi, P., Cerrai, D., Rinaudo, V., and Belloni, P. 2004. Effects of green manure on soil nitrogen availability and crop productivity in a Mediterranean organic farming system. Abstracts Eurosoil 2004, Freiburg (Germany) 4–12 September, p. 446.Google Scholar
34Dufault, R.J., Decoteau, D.R., Garrett, J.T., Batal, K.D., Granberry, D., Davis, J.M., Hoyt, G., and Sanders, D. 2000. Influence of cover crops and inorganic nitrogen fertilization on tomato and snap bean production and soil nitrate distribution. Journal of Vegetable Crop Production 6(2): 1325.CrossRefGoogle Scholar
35Sainju, U.M., Singh, B.P., Rahman, S., and Reddy, V.R. 1999. Soil nitrate-nitrogen under tomato following tillage, cover cropping, and nitrogen fertilization. Journal of Environmental Quality 28(6):18371844.CrossRefGoogle Scholar
36Sainju, U.M., Singh, B.P., and Whitehead, W.F. 2001. Comparison of the effects of cover crops and nitrogen fertilization on tomato yield, root growth, and soil properties. Scientia Horticulturae 91(3/4):201214.CrossRefGoogle Scholar
37Wang, Q., Bryan, H., Klassen, W., Li, Y., Codallo, M., and Abdul-Baki, A. 2002. Improved tomato production with summer cover crops and reduced irrigation rates. Proceedings of the Florida State Horticultural Society 115:202207.Google Scholar
38Wang, Q., Klassen, W., Bryan, H., Li, Y., and Abdul-Baki, A. 2003. Influence of summer cover crops on growth and yield of a subsequent tomato crop in South Florida. Proceedings of the Florida State Horticultural Society 116:140143.Google Scholar
39Abdul-Baki, A., Klassen, W., Bryan, H., Codallo, M., Hima, B., Wang, Q., Li, Y., Yao-chi, L., and Handoo, Z. 2005. A biologically-based system for winter production of fresh-market tomatoes in South Florida. Proceedings of the Florida State Horticultural Society 118:153159.Google Scholar
40Whitmore, A. P. 1996. Modelling the release and loss of nitrogen after vegetable crops. Netherlands Journal of Agricultural Science 44(1):7386.CrossRefGoogle Scholar
41Fox, R.H., Myers, R.J.K., and Vallis, I. 1990. The nitrogen mineralization rate of legume residues in soil as influenced by their polyphenol, lignin and nitrogen contents. Plant and Soil 129(2):251259.CrossRefGoogle Scholar
42Cabrera, M.L., Kissel, D.E., and Vigil, M.F. 2005. Nitrogen mineralization from organic residues: research opportunities. Journal of Environmental Quality 34(1):7579.CrossRefGoogle ScholarPubMed
43Mafongoya, P.L., Nair, P.K.R., and Dzowela, B.H. 1998. Mineralization of nitrogen from decomposing leaves of multipurpose trees as affected by their chemical composition. Biology and Fertility of Soils 27(2):143148.CrossRefGoogle Scholar
44Trinsoutrot, S., Recous, S., Bentz, B., Linères, M., Chèneby, D., and Nicolardot, B. 2000. Biochemical quality of crop residues and carbon and nitrogen mineralization kinetics under nonlimiting nitrogen conditions. Soil Science Society of American Journal 64(3):918926.CrossRefGoogle Scholar
45Kaniszewski, S. and Rumpel, K. 1987. Effect of nitrogen fertilization and irrigation on yield, nitrogen status in plants and quality of fruits of direct seeded tomatoes. Acta Horticulturae 200:195202.CrossRefGoogle Scholar
46Wang, Y-T., Huang, S-W., Liu, R-L., and Jin, J-Y. 2007. Effect of nitrogen application on flavour compounds of cherry tomato fruits. Journal of Plant Nutrition and Soil Science 170:461468.CrossRefGoogle Scholar
47Kelly, T.C., Lu, Y., Abdul-Baki, A.A., and Teasdale, J.R. 1995. Economics of a hairy vetch mulch system for producing fresh-market tomatoes in the Mid-Atlantic Region. Journal of the American Society for Horticultural Science 120(5):854860.CrossRefGoogle Scholar