Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-27T19:14:15.048Z Has data issue: false hasContentIssue false

Effects induced by living mulch on rhizosphere interactions in organic artichoke: The cultivar's adaptive strategy

Published online by Cambridge University Press:  10 June 2016

A. Trinchera*
Affiliation:
Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria — Centro di ricerca per lo studio delle relazioni tra pianta e suolo (CREA-RPS), Via della Navicella, 2–4, 00184,Roma.
E. Testani
Affiliation:
Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria — Centro di ricerca per lo studio delle relazioni tra pianta e suolo (CREA-RPS), Via della Navicella, 2–4, 00184,Roma.
C. Ciaccia
Affiliation:
Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria — Centro di ricerca per lo studio delle relazioni tra pianta e suolo (CREA-RPS), Via della Navicella, 2–4, 00184,Roma.
G. Campanelli
Affiliation:
Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria — Unità di ricerca per l'orticoltura (CREA-ORA), Via Salaria, 1, 63077, Monsampolo del Tronto (AP).
F. Leteo
Affiliation:
Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria — Unità di ricerca per l'orticoltura (CREA-ORA), Via Salaria, 1, 63077, Monsampolo del Tronto (AP).
S. Canali
Affiliation:
Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria — Centro di ricerca per lo studio delle relazioni tra pianta e suolo (CREA-RPS), Via della Navicella, 2–4, 00184,Roma.
*
*Corresponding author: alessandra.trinchera@crea.gov.it

Abstract

The plant root apparatus and the surrounding micro-environment is strongly influenced by specific abiotic and biotic conditions which occur in the plant rhizosphere system. The hypothesis of the reported research was that, in an organically managed horticultural system, the use of living mulch (LM) promotes the arbuscular mycorrhizal fungi (AMF) colonization among neighboring roots, because of the coexistence of different plants roots in confined soil spaces. This effect determines nutrient uptake optimization, although roots belong to different plant species. In the reported 2-yr field experiment (2012–2013), two Italian artichoke cultivars [Cynara cardunculus L. var. scolymus (L.), Jesino cv. and Mazzaferrata cv.] were intercropped with a LM mixture of plant species and compared with a no LM control. Every year, the effect of LM on artichoke root morphology and AMF colonization was evaluated by scanning electron microscopy, in order to assess abiotic and biotic rhizosphere interactions, as affected by artichoke cultivars. Also the artichoke yield, the soil available phosphorus (P) and rhizosphere P were determined. Results showed that the LM did not reduce yield of both the artichoke cultivars, when compared with the no LM ones. Furthermore, LM has: (i) induced structural changes in artichoke roots by proliferation of root hairs resulting in an increase of effective absorbing surface; (ii) promoted the rhizosphere mycorrhizal infection which improved P uptake. The modified rhizosphere interactions were found to be cultivar-dependent, being recorded only in Jesino artichoke.

Type
Themed Content: Living Mulch
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Al-Karaki, G. 2004. Field response of wheat to arbuscular mycorrhizal fungi and drought stress. Mycorrhiza 14:263269.Google Scholar
Altieri, M. and Rosset, P. 1996. Agroecology and the conversion of large-scale conventional systems to sustainable management. International Journal of Environmental Studies 50:165185.Google Scholar
Bago, B., Pfeffer, P.E., and Shachar-Hill, Y. 2000. Carbon metabolism and transport in arbuscular mycorrhizas. Plant Physiologist 124:949957.CrossRefGoogle ScholarPubMed
Bàrberi, P. 2015. Functional biodiversity in organic systems: The way forward? Sustainable Agriculture Research 4(3):2631.CrossRefGoogle Scholar
Baumann, D.T., Kropff, M.J., and Bastiaans, L. 2000. Intercropping leeks to suppress weeds. Weed Research 40(4):359374.Google Scholar
Birhane, E., Sterck, F.J., Fetene, M., Bongers, F., and Kuyper, T.W. 2012. Arbuscular mycorrhizal fungi enhance photosynthesis, water use efficiency, and growth of frankincense seedlings under pulsed water availability conditions. Oecologia 169:895904.Google Scholar
Burgio, G., Kristensen, H.L., Campanelli, G., Bavec, F., Bavec, M., von Fragstein und Niemsdorff, P., Depalo, L., Lanzoni, A., and Canali, S. 2014. Effect of living mulch on pest/beneficial interaction. In Rahmann, G. and Aksoy, U. (eds). Building Organic Bridges. Johann Heinrich von ThünenInstitut, Braunschweig, Vol. 20. p. 741744.Google Scholar
Burrows, R.L. and Pfleger, F.L. 2002. Arbuscular mycorrhizal fungi respond to increasing plant diversity. Canadian Journal of Botany 80:120130.Google Scholar
Campanelli, G. and Canali, S. 2012. Crop production and environmental effects in conventional and organic vegetable farming systems: The case of a long-term experiment in Mediterranean conditions (Central Italy). Journal of Sustainable Agriculture 36:599619.Google Scholar
Canali, S., Campanelli, G., Ciaccia, C., Diacono, M., Leteo, F., Fiore, A. and Montemurro, F. 2015. Living mulch strategy for organic cauliflower (Brassica oleracea L.) production in central and southern Italy. Italian Journal of Agronomy 10:9096.Google Scholar
Chase, C.A. and Mbuya, O.S. 2008. Greater interference from living mulches than weeds in organic broccoli production. Weed Technology 22(2):280285. http://dx.doi.org/10.1614/WT-07-119.1 Google Scholar
Cheng, X. and Baumgartner, K. 2005. Overlap of grapevine and cover-crop roots enhances interactions among grapevines, cover crops, and arbuscular mycorrhizal Fungi. Soil Environment and Vine Mineral Nutrition 1:171174.Google Scholar
Ciaccia, C., Kristensen, H.L., Campanelli, G., Bavec, F., von Fragstein, P., Robacer, M., Testani, E., and Canali, S. 2015. Living mulch and vegetable production: Effect on crop/weed competition. In Rahmann, G. and Aksoy, U. (eds). Building Organic Bridges. Johann Heinrich von ThünenInstitut, Braunschweig, Vol. 20, p. 717720.Google Scholar
Ciancolini, A., Ficcadenti, N., Rey, N.A., Sestili, S., Bertone, A., Saccardo, F., Crinò, P., and Pagnotta, M.A. (2013). Assessment of genetic variability among globe artichoke spring landraces from Marche region revealed by molecular and agronomical. Acta Horticulturae 983:8793. doi: 10.17660/ActaHortic.2013.983.10 http://dx.doi.org/10.17660/ActaHortic.2013.983.10 Google Scholar
Derkowska, E., Sas-Paszt, L., Sumorok, B., Szwonek, E., and Sawomir, G. 2008. The influence of mycorrhization and organic mulches on mycorrhizal frequency in apple and strawberry roots. Journal of Fruit and Ornamental Plant Research 16:227242.Google Scholar
Douds, D.D. Jr, Pfeffer, P.E., and Shachar-Hill, Y. 2000. Carbon partitioning, cost, and metabolism of arbuscular mycorrhizas. In Kapulnik, Y. and Douds, D.D. Jr (eds). Arbuscular Mycorrhizas: Physiology and Function. Kluwer Academic Publishers, Dordrecht. p. 107129.Google Scholar
Ficcadenti, N., Piccinini, E., Campanelli, G., Bertone, A., Angelini, P., Sebastiani, M.S., and Ferrari, V. 2013. Valutazione della variabilità genetica di popolazioni marchigiane e abruzzesi di carciofo tardivo ai fini della costituzione di varietà innovative da iscrivere al Registro Nazionale delle Varietà. Acta Italus Hortus 8:5463.Google Scholar
Furubayashi, A., Hiradate, S., Araya, H., and Yoshiharu, F. 2003. Method for bioassay to evaluate the allelopathic activity in rhizosphere soil. Journal of Weed Science and Technology 48:142143.Google Scholar
Grace, C. and Stribely, D.P. 1991. A safer procedure for routine staining of vesicular-arbuscular mycorrhizal fungi. Mycological Research 95(10):11601162.CrossRefGoogle Scholar
Hill, J.O., Simpson, R.J., Ryan, M.H., and Chapman, D.F. 2010. Root hair morphology and mycorrhizal colonisation of pasture species in response to phosphorus and nitrogen nutrition. Crop and Pasture Science 61(2):122131.Google Scholar
Hiltbrunner, J., Liedgens, M., Bloch, L., Stamp, P., and Streit, B. 2007. Legume cover crops as living mulches for winter wheat: Components of biomass and the control of weeds. European Journal of Agronomy 26:2129. http://dx.doi.org/10.1016/j.eja.2006.08.002 CrossRefGoogle Scholar
Jeffries, P., Gianinazzi, S., Perotto, S., Turnau, K., and Barea, J.M. 2003. The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biology and Fertility of Soils 37:116.Google Scholar
Kahiluoto, H. and Vestberg, M. 1998. The effect of arbuscular mycorrhiza on biomass production and phosphorus uptake from sparingly soluble sources by leek (Allium porrum L.) in Finnish field soils. Biological Agriculture and Horticulture 16(1):6585.CrossRefGoogle Scholar
Kaldorf, M. and Ludwig-Müller, J. 2000. AM fungi might affect the root morphology of maize by increasing indole-3-butyric acid biosynthesis. Physiologia Plantarum 109(1):5867.Google Scholar
Keyes, S.D., Daly, K.R., Gostling, N.J., Jones, D.L., Talboys, P., Pinzer, B.R., Boardman, R., Sinclair, I., Marchant, A., and Roose, T. 2013. High resolution synchrotron imaging of wheat root hairs growing in soil and image based modelling of phosphate uptake. New Phytologist 198(4):10231029.CrossRefGoogle ScholarPubMed
Kołota, E. and Adamczewska-Sowińska, K. 2013. Living mulches in vegetable crops production: Perspectives and limitations (a review). Acta Scientiarum Polonorum—Hortorum Cultus 12:127142.Google Scholar
Kremen, C. and Miles, A. 2012. Ecosystem services in biologically diversified versus conventional farming systems: Benefits, externalities, and trade-offs. Ecology and Society 17(4):40. http://dx.doi.org/10.5751/ES-05035-170440 Google Scholar
Kristensen, H.L., Campanelli, G., Bavec, F., von Fragstein und Niemsdorff, P., Canali, S., and Tittarelli, F. 2014. Effect of an in-season living mulch on leaching of organic nitrogen in cauliflower (Brassica oleracea L., var. Botrytis) cropping in Slovenia, Germany and Denmark. In Rahmann, G. and Aksoy, U. (eds). Building Organic Bridges. Johann Heinrich von ThünenInstitut, Braunschweig, Vol 20, p. 199202.Google Scholar
Liu, A., Hamel, C., Elmi, A.A., Zhang, T., and Smith, D.L. 2003. Reduction of the available phosphorus pool in field soils growing maize genotypes with extensive mycorrhizal development. Canadian Journal of Plant Science 83(4):737744.Google Scholar
Mäder, P., Edenhofer, S., Boller, T., Wiemken, A., and Niggli, U. 2000. Arbuscular mycorrhizae in a long-term field trial comparing low-input (organic, biological) and high-input (conventional) farming systems in a crop rotation. Biology and Fertility of Soils 31:150156.Google Scholar
Masiunas, J.B. 1998. Production of vegetables using cover crop and living mulches—a review. Journal of Vegetable Crop Production 4:1131.Google Scholar
Mazzoncini, M., Canali, S., Giovannetti, M., Castagnoli, M., Tittarelli, F., Antichi, D., Nannelli, R., Cristani, C., and Bàrberi, P. 2010. Comparison of organic and conventional stockless arable systems: A multidisciplinary approach to soil quality evaluation. Applied Soil Ecology 44:124132.Google Scholar
Njeru, E.M., Avio, L., Sbrana, C., Turrini, A., Bocci, G., Bàrberi, P., and Giovannetti, M. 2014. First evidence for a major cover crop effect on arbuscular mycorrhizal fungi and organic maize growth. Agronomy for Sustainable Development 34:841848.Google Scholar
Olsen, S.R., Cole, C.V., Watanabe, F.S., and Dean, L.A. 1954. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate. U.S.D.A. circular 939, U.S. Gov. Print. Office, Washington, DC.Google Scholar
Plaxton, W. and Lambers, H. 2015. Annual Plant Reviews. Phosphorus Metabolism in Plants. John Wiley & Sons, Perth. p. 379387.Google Scholar
Raviv, M. 2010. Sustainability of organic farming. Horticultural Reviews 36:289333.Google Scholar
Shachar-Hill, Y., Pfeffer, P.E., Douds, D., Osman, S.F., Doner, L.W., and Ratcliffe, R.G. 1995. Partitioning of intermediate carbon metabolism in VAM colonized leek. Plant Physiology 108:715.Google Scholar
Smith, S.E. and Read, D.J. 2009. Mycorrhizas in agriculture, horticulture and forestry. In Smith, S.E. and Read, D.J. (eds). Mycorrhizal Symbiosis. 3rd ed. Elsevier, London. p. 611636.Google Scholar
Swenson, J.A., Walters, S.A., and Chong, S.K. 2004. Influence of tillage and mulching systems on soil water and tomato fruit yield and quality. Journal of Vegetable Crop Production 10(1):8195.Google Scholar
Tawaraya, K. 2003. Arbuscular mycorrhizal dependency of different plant species and cultivars. Soil Science and Plant Nutrition 49(5):655668.Google Scholar
Trinchera, A., Torrisi, B., Allegra, M., Rinaldi, S., Rea, E., Intrigliolo, F., and Roccuzzo, G. 2015. Effects of organic fertilization on soil organic matter and root morphology and density of orange trees. Acta Horticulturae 1065:18071814.Google Scholar
Trouvelot, A., Kouch, J., and Gianinazzi-Pearson, V. 1986. Mesure du taux de colonization on VA d'un systeme radiculaire: Colonizat of method d'estimation ayant une signification fonctionelle. In Ier Seminaire, Dijon (ed.). Les Mycorhizes: Physiologie et Génétique. INRA, Paris. p. 217221.Google Scholar
U.S. Department of Agriculture. 1996. Soil survey laboratory methods manual. Natural Resource Conservation Service. Soil Survey Investigations Report No. 42, vers. 3.0. Washington, DC.Google Scholar
van der Heijden, M.G.A., Klironomos, J.N., Ursic, M., Moutoglis, P., Streitwolf-Engel, R., Boller, T., Wiemken, A., and Sanders, I.R. 1998. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:6972.Google Scholar
Verbruggen, E., Roling, W.F.M., Gamper, H.A., Kowalchuk, G.A., Verhoef, H.A., and van der Heijden, M.G.A. 2010. Positive effects of organic farming on below-ground mutualists: Large-scale comparison of mycorrhizal fungal communities in agricultural soils. New Phytologist 186:968979. doi: 10.1111/j.1469-8137.2010.03230.x Google Scholar