Published online by Cambridge University Press: 29 July 2009
Rollers crimpers have been used in conservation agriculture to terminate cover crops; however, excessive vibration generated by the original straight-bar roller design has delayed adoption of this technology in the United States. To avoid excessive vibration, producers generally reduce operating speeds that increase the time needed to perform the field operation. The objectives of this research were to identify roller crimper designs that terminated rye cover crops consistently, resulted in soil moisture conservation after use, and minimized vibrations when operated in the field. Six different roller types were developed and tested at 3.2 and 6.4 km h−1 in Alabama field experiments during the 2006, 2007 and 2008 growing seasons. All roller types were used alone and one also in combination with glyphosate. Rye mortalities were evaluated 1, 2 and 3 weeks after rolling and compared with the check (non-rolled standing rye). Soil volumetric moisture content (VMC) was measured at the day of rolling, and then at 1, 2 and 3 weeks after rolling. Vibration was measured on the rollers' and tractor's frames during operation. Mortality for rolled rye 2 weeks after rolling was at least 98% compared with 96% for the check in 2006, 93% for rolling compared with 75% for the check in 2007, and 94% for rolling compared with 60% for the check in 2008 (P<0.10). There were no consistent differences in rye mortality across roller types (without glyphosate) and speeds. VMC for soil in non-rolled rye plots was consistently lower than in rolled rye plots, averaging 3% compared with 7% 2 weeks after rolling in 2006, and 4% compared with 8% in 2008. During 2007, VMC was affected by severe drought conditions, and differences between roller treatments were detected but minor. The straight-bar roller generated the highest vibration on the tractor's frame at 6.4 km h−1 (0.71 m s−2, RMS), which exceeded International Standards (International Standard Office (ISO)). At 6.4 km h−1, new roller designs generated significantly lower acceleration levels from 0.12 to 0.32 m s−2 on the tractor's frame and were below detrimental effects on health ‘health limits’ classified by ISO. Overall, 2 weeks after rolling, all roller designs effectively terminated rye above 90%, which is the recommended termination level of rye to plant a cash crop into residue mat, while protecting soil surface from water loss. New roller designs generate less vibration than the original design and can be used safely at higher operating speeds.