Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-14T17:03:40.495Z Has data issue: false hasContentIssue false

Soil properties in organic olive orchards following different weed management in a rolling landscape of Andalusia, Spain

Published online by Cambridge University Press:  20 December 2012

María-Auxiliadora Soriano*
Affiliation:
Department of Agronomía, ceiA3, Universidad de Córdoba. Apdo. 3048, 14080 Córdoba, Spain.
Sonia Álvarez
Affiliation:
Instituto de Agricultura Sostenible, CSIC. Apdo. 4084, 14080 Córdoba, Spain.
Blanca B. Landa
Affiliation:
Instituto de Agricultura Sostenible, CSIC. Apdo. 4084, 14080 Córdoba, Spain.
José A. Gómez
Affiliation:
Instituto de Agricultura Sostenible, CSIC. Apdo. 4084, 14080 Córdoba, Spain.
*
* Corresponding author: ag1sojim@uco.es

Abstract

This study evaluated the most significant physical, chemical and biological soil properties from a group of organic olive farms located in a typical olive-growing area of Andalusia, Spain, after 5 or more years since the shift from conventional to organic farming, and compared soils with those in nearby undisturbed (U) natural areas. Two soil management systems implemented in these organic olive farms to control weeds, tillage (T), characterized by non-inverting-shallow tillage in spring, and mechanical mowing (M), were compared and evaluated against the U areas. Organic olive orchards showed similar productivity (average fruit yield of 3130 kg ha−1 yr−1) as the conventional, rain-fed olive groves in the same area, with no significant differences due to soil management systems. Soil properties in the olive orchards (i.e. texture, pH, organic carbon (C), organic nitrogen (N), C:N ratio, cation exchange capacity (CEC) and exchangeable potassium) were in the suitable range for olive farming in both soil managements, although organic C and N, saturated hydraulic conductivity and available water-holding capacity (AWC) of the soil were lower than in the U areas. A principal component analysis (PCA) for soil properties in topsoil (0–10 cm depth) distinguished the T from M olive orchards and U areas, and determined organic C and N as the most significant soil properties to characterize them. Average values of soil organic carbon (SOC) stocks for the surface layer (0–10 cm depth) were 18.6, 59.3 and 67.8 Mg ha−1, for T and M soil management systems and U areas, respectively. This indicates that the sustainability of organic olive orchards could be significantly improved by shifting to M soil management to decrease soil erosion and depletion of SOC.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2012 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 CAP. 2011. Estadísticas agrarias [Agricultural statistics]. Consejería de Agricultura y Pesca, Junta de Andalucía, Sevilla, Spain. Available at Web site http://www.juntadeandalucia.es/agriculturaypesca/portal/servicios/estadisticas/estadisticas/agrarias/index.html (verified August 10, 2012).Google Scholar
2 IOC. 2011. World Olive Oil Figures. International Olive Council. Available at Web site http://www.internationaloliveoil.org/estaticos/view/131-world-olive-oil-figures (verified December 30, 2011).Google Scholar
3 CAP. 2011. El sector del aceite de oliva y de la aceituna de mesa en Andalucía [Olive oil and table olives sector in Andalusia]. Consejería de Agricultura y Pesca, Junta de Andalucía, Sevilla, Spain. Available at Web site http://www.juntadeandalucia.es/agriculturaypesca/portal/servicios/estadisticas/estudios-e-informes/agricultura/olivar/sector-aceite-aceituna-mesa-andalucia.html (verified December 30, 2011).Google Scholar
4 Gómez, J.A. and Giráldez, J.V. 2009. Erosión y degradación de suelos [Soil erosion and degradation]. In Gómez, J.A. (ed.). Sostenibilidad de la producción de olivar en Andalucía. Junta de Andalucía, Sevilla, Spain. p. 4586.Google Scholar
5 Beaufoy, G. 2001. EU Policies for Olive Farming. Unsustainable on all Counts. WWF's European Policy Office-BirdLife International, Brussels, Belgium. Available at Web site http://www.wwf.org.uk/filelibrary/pdf/oliveoil.pdf (verified December 30, 2011).Google Scholar
6 Milgroom, J., Soriano, M.A., Garrido, J.M., Gómez, J.A., and Fereres, E. 2007. The influence of a shift from conventional to organic olive farming on soil management and erosion risk in southern Spain. Renewable Agriculture and Food Systems 2:110.CrossRefGoogle Scholar
7 Milgroom, J., Gómez, J.A., Soriano, M.A., and Fereres, E. 2007. From experimental research to an on-farm tool for participatory monitoring and evaluation: an assessment of soil erosion risk in organic olive orchards. Land Degradation and Development 18:397411.Google Scholar
8 Álvarez, S., Soriano, M.A., Landa, B.B., and Gómez, J.A. 2007. Soil properties in organic olive groves compared with that in natural areas in a mountainous landscape in southern Spain. Soil Use and Management 23:404416.CrossRefGoogle Scholar
9 FAO. 2006. World references base for soil resources. World Soil Resources Reports, 103. FAO, Rome, Italy. Available at Web site http://www.fao.org/ag/agl/agll/wrb/doc/wrb2006final.pdf (verified December 30, 2011).Google Scholar
10 Herweg, K. 1996. A field manual for assessment of current erosion damage. Soil Conservation Research Programme, Ethiopia, and Centre for Development and Environment, University of Berne, Switzerland.Google Scholar
11 Wu, L., Pan, L., Mitchell, J., and Sanden, B. 1999. Measuring saturated hydraulic conductivity using a generalized solution for single ring infiltrometers. Soil Science Society of America Journal 63:788792.Google Scholar
12 Bouyoucos, G.J. 1962. Hydrometer method used for making particle size analyses of soils. Agronomy Journal 54:464465.Google Scholar
13 Barthès, B. and Roose, E. 2002. Aggregate stability as an indicator of soil susceptibility to run-off and erosion: validation at several levels. Catena 47:133149.Google Scholar
14 Nelson, D.W. and Sommers, L.E. 1982. Total carbon, organic carbon and organic matter. In Page, A.L., Miller, R.H., and Keeney, D.R. (eds). Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties. Agronomy Monograph No. 9, ASA-SSSA, Madison, WI. p. 539579.Google Scholar
15 Stevenson, F.J. 1982. Nitrogen-organic forms. In Page, A.L., Miller, R.H., and Keeney, D.R. (eds). Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties. Agronomy Monograph No. 9, ASA-SSSA, Madison, WI. p. 625641.Google Scholar
16 Olsen, S.R. and Sommers, L.E. 1982. Phosphorus. In Page, A.L., Miller, R.H., and Keeney, D.R. (eds). Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties. Agronomy Monograph No. 9, ASA-SSSA, Madison, WI. p. 403430.Google Scholar
17 Knudsen, D., Peterson, G.A., and Pratt, P.F. 1982. Lithium, Sodium, and Potassium. In Page, A.L., Miller, R.H., and Keeney, D.R. (eds). Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties. Agronomy Monograph No. 9, ASA-SSSA, Madison, WI. p. 225245.Google Scholar
18 Rhoades, J.D. 1982. Cation exchange capacity. In Page, A.L., Miller, R.H., and Keeney, D.R. (eds). Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties. Agronomy Monograph No. 9, ASA-SSSA, Madison, WI. p. 149157.Google Scholar
19 Vähäoja, P., Roppola, K., Välimäli, I., and Kuokkanen, T. 2005. Studies of biodegradability of certain oils in forest soil as determined by the respirometric BOD OxiTop method. International Journal of Environmental Analytical Chemistry 85:10651073.Google Scholar
20 Bochner, B.R. 1989. ‘Breathprints’ at the microbial level. ASM News 55:536539.Google Scholar
21 Renard, K.G., Foster, G.R., Weesies, G.A., McCool, D.K., and Yoder, D.C. 1997. Predicting Soil Erosion by Water: a Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE). US Department of Agriculture, Washington, DC.Google Scholar
22 Zak, J.C., Willig, M.R., Moorhead, D.L., and Wildman, H.G. 1994. Functional diversity of microbial communities: a quantitative approach. Soil Biology and Biochemistry 26:11011108.Google Scholar
23 Rawls, W.J. and Brakensiek, D.L. 1989. Estimation of soil water retention and hydraulic properties. In Morel-Seytoux, H.J. (ed.). Unsaturated Flow in Hydrology: Theory and Practice. Kluwer Academic Publishers, Dordrecht, The Netherlands. p. 275300.CrossRefGoogle Scholar
24 Schoeneberger, P.J., Wysocki, D.A., Benham, E.C., and Broderson, W.D. (eds). 2002. Field Book for Describing and Sampling Soils, Version 2.0. Natural Resources Conservation Service, National Soil Survey Center, Lincoln, NE.Google Scholar
25 Guzmán, G.I. and Alonso, A.M. 2008. A comparison of energy use in conventional and organic olive oil production in Spain. Agricultural Systems 98:167176.Google Scholar
26 Fluck, R.C. 1992. Energy of human labor. In Fluck, R.C. (ed.). Energy in Farm Production. Energy in World Agriculture Vol. 6, Elsevier, Amsterdam, The Netherlands. p. 3137.Google Scholar
27 Steel, R.G.D. and Torrie, J.H. 1980. Principles and Procedures of Statistics: a Biometrical Approach. McGraw-Hill, New York, NY.Google Scholar
28 Dunteman, G.H. 1989. Principal component analysis. Sage University Paper Series, Quantitative Applications in the Social Sciences 07-069. SAGE Publications, Newbury Park, CA.Google Scholar
29 CEBAC. 1971. Fertilidad [Fertility]. In Instituto Nacional de Edafología y Agrobiología (ed.). Estudio Agrobiológico de la Provincia de Córdoba. CSIC, Madrid, Spain. p. 263387.Google Scholar
30 Gee, G.W. and Bauder, J.W. 1986. Particle-size analysis. In Klute, A. (ed.). Methods of Soil Analysis. Part 1. Physical and mineralogical methods. Agronomy Monograph No. 9, ASA-SSSA, Madison, WI. p. 383411.Google Scholar
31 Benítez, M.L., Pedrajas, V.M., del Campillo, M.C., and Torrent, J. 2002. Iron chlorosis in olive in relation to soil properties. Nutrient Cycling in Agroecosystems 62:4752.Google Scholar
32 García, F., Ruíz, F., Cano, J., Pérez, J., and Molina, J. 2004. Suelo, riego, nutrición y medio ambiente del olivar [Soil, irrigation, nutrition and environment of olive grove]. Servicio de Publicaciones y Divulgación, CAP-JA, Sevilla, Spain.Google Scholar
33 Young, J.L. and Aldag, R.W. 1982. Inorganic forms of nitrogen in soil. In Stevenson, F.J. (ed.). Nitrogen in Agricultural Soils. Agronomy Monograph No. 22, ASA-CSSA-SSSA, Madison, WI. p. 4366.Google Scholar
34 Pastor, M., Navarro, C., Vega, V., and Castro, J. 1996. Fertilización del olivar [Olive orchard fertilization]. In Consejería de Agricultura y Pesca-JA (ed.). Manejo del olivar con riego por goteo. Col. Informes técnicos 41/96, DGIA, Sevilla, Spain. p. 63105.Google Scholar
35 CAP. 2003. El olivar andaluz [The Andalusian olive grove]. Servicio de Publicaciones y Divulgación, CAP-JA, Sevilla, Spain.Google Scholar
36 Gómez, J.A. 2005. Effects of soil management on soil physical properties and infiltration in olive orchards: implications for yield. In Benites, J. et al. (eds). FAO Land and Water Bulletin No. 10. FAO, Rome, Italy. p. 6570.Google Scholar
37 Gómez, J.A., Giráldez, J.V., and Fereres, E. 2009. The influence of cover crops and tillage on water and sediment yield, and on nutrient and organic matter losses in an olive orchard on a sandy loam soil. Soil and Tillage Research 106:137144.CrossRefGoogle Scholar
38 Junta de Andalucía. 2008. Reglamento específico de producción integrada de olivar [Specific regulation for integrated production of olives]. Orden de 15 de abril de 2008 de la Consejería de Agricultura y Pesca. BOJA 83:938.Google Scholar
39 Castro, J., Fernández-Ondoño, E., Rodríguez, C., Lallena, A.M., Sierra, M., and Aguilar, J. 2008. Effects of different olive-grove management systems on the organic carbon and nitrogen content of the soil in Jaén (Spain). Soil and Tillage Research 98:5667.Google Scholar
40 MAPA. 2004. Real Decreto 2352/2004, de 23 de diciembre, sobre la aplicación de la condicionalidad en relación con las ayudas directas en el marco de la política agrícola común [Royal Decree 2352/2004 of December 23 2004 on the application of conditionality in relation to direct support schemes under the common agricultural policy]. Boletín Oficial del Estado 309:4169041698.Google Scholar
41 CAP. 2005. Orden, de 23 de junio de 2005, por la que se desarrollan los requisitos de aplicación de la condicionalidad en relación con las ayudas directas en el marco de la Política Agrícola Común [Order of June 23, 2005, to developing requirements of conditionality application in relation to direct payments under the Common Agricultural Policy]. BOJA 133:1325.Google Scholar