Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-13T12:23:22.917Z Has data issue: false hasContentIssue false

THE LOGIC OF SEQUENCE FRAMES

Published online by Cambridge University Press:  21 July 2020

FABIO LAMPERT*
Affiliation:
DEPARTMENT OF LOGIC AND PHILOSOPHY OF SCIENCE UNIVERSITY OF CALIFORNIAIRVINE, CA, USAE-mail: fdalcont@uci.edu

Abstract

This paper investigates and develops generalizations of two-dimensional modal logics to any finite dimension. These logics are natural extensions of multidimensional systems known from the literature on logics for a priori knowledge. We prove a completeness theorem for propositional n-dimensional modal logics and show them to be decidable by means of a systematic tableau construction.

Type
Research Article
Copyright
© Association for Symbolic Logic, 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

BIBLIOGRAPHY

Antonelli, G. A., & Thomason, R. H. (2002). Representability in second-order propositional poly-modal logic. The Journal of Symbolic Logic, 67, 10391054.CrossRefGoogle Scholar
Blackburn, P., de Rijke, M., & Venema, Y. (2001). Modal Logic. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Chalmers, D. (2004). Epistemic two-dimensional semantics. Philosophical Studies, 118, 153226.CrossRefGoogle Scholar
Chalmers, D., & Rabern, B. (2014). Two-dimensional semantics and the nesting problem. Analysis, 74(2), 210224.CrossRefGoogle Scholar
Crossley, J. N., & Humberstone, I. L. (1977). The logic of “actually”. Reports on Mathematical Logic, 8, 129.Google Scholar
Davies, M., & Humberstone, L. (1980). Two notions of necessity. Philosophical Studies, 38(1), 130.CrossRefGoogle Scholar
Evans, G. (1979). Reference and contingency. The Monist, 62, 161189.CrossRefGoogle Scholar
Fitting, M. (1983). Proof Methods for Modal and Intuitionistic Logics. Dordrecht, Netherlands: D. Reidel Publishing Company.CrossRefGoogle Scholar
Fitting, M. & Mendelsohn, R.L. (1998). First-Order Modal Logic. Dordrecht, Netherlands: Kluwer.CrossRefGoogle Scholar
French, R. (2012). An argument against general validity? Thought, 1(1), 49.CrossRefGoogle Scholar
Fritz, P. (2013). A Logic for epistemic two-dimensional semantics. Synthese, 190, 17531770.CrossRefGoogle Scholar
Fritz, P. (2014). What is the correct logic of necessity, actuality, and apriority? The Review of Symbolic Logic, 7(3), 385414.CrossRefGoogle Scholar
Fusco, M. (2020). A two-dimensional logic for diagonalization and the a priori. Synthese. https://doi.org/10.1007/s11229-020-02574-7 CrossRefGoogle Scholar
Gabbay, D. M., Kurucz, A., Wolter, F., & Zakharyaschev, M., eds. (2003). Many-Dimensional Modal Logics: Theory and Applications. Studies in Logic and the Foundations of Mathematics, Vol. 148. Elsevier: Amsterdam.Google Scholar
Gilbert, D. (2016). Two-dimensional tableaux. Australasian Journal of Logic, 13(7), 143170.CrossRefGoogle Scholar
Hanson, W. (2006). Actuality, necessity, and logical truth. Philosophical Studies , 130, 437459.CrossRefGoogle Scholar
Hanson, W. (2014). Logical truth in modal languages: A reply to Nelson and Zalta. Philosophical Studies, 167(2), 327339.CrossRefGoogle Scholar
Hazen, A. P. (1976). Expressive completeness in modal language. Journal of Philosophical Logic, 5, 2546.CrossRefGoogle Scholar
Hazen, A. P., Rin, B., and Wehmeier, K. (2013). Actuality in propositional modal logic. Studia Logica, 101, 487503.CrossRefGoogle Scholar
Humberstone, L. (2004). Two-dimensional adventures. Philosophical Studies, 118, 1765.CrossRefGoogle Scholar
Kaplan, D. (1989). Demonstratives. In Almog, J., Perry, J. and Wettstein, H., editors. Themes from Kaplan. Oxford, UK: Oxford University Press, pp. 481563.Google Scholar
Lampert, F. (2018). Actuality, tableaux, and two-dimensional modal logics. Erkenntnis, 83, 403443.CrossRefGoogle Scholar
Nelson, M., & Zalta, E. (2012). A defense of contingent logical truths. Philosophical Studies, 157(1), 153162.CrossRefGoogle Scholar
Restall, G. (2012). A cut-free sequent system for two-dimensional modal logic, and why it matters. Annals of Pure and Applied Logic, 163, 16111623.CrossRefGoogle Scholar
Smullyan, R. (1968). First-Order Logic. New York, NY: Springer-Verlag.CrossRefGoogle Scholar
Standefer, S. (forthcoming). Actual issues for relevant logics. Ergo.Google Scholar
Weatherson, B. (2001). Indicative and subjunctives. Philosophical Quarterly, 51, 200216.CrossRefGoogle Scholar
Wehmeier, K. (2003). World traveling and mood swings. In Löwe, B., Räsch, T., and Malzkorn, W., editors. Foundations of the Formal Sciences. Kluwer: Dordrecht, pp. 257260.CrossRefGoogle Scholar
Wehmeier, K. (2013). Subjunctivity and conditionals. The Journal of Philosophy, 110, 117142.CrossRefGoogle Scholar
Wehmeier, K. (2014). Nothing but d-truth. Analytic Philosophy, 55(1), 114117.CrossRefGoogle Scholar
Zalta, E. (1988). Logical and analytic truths that are not necessary. Journal of Philosophy, 85, 5774.CrossRefGoogle Scholar