Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-26T04:58:15.106Z Has data issue: false hasContentIssue false

THE AMBIGUITY OF KNOWABILITY

Published online by Cambridge University Press:  14 June 2016

BARTELD KOOI*
Affiliation:
Faculty of Philosophy, University of Groningen
*
*FACULTY OF PHILOSOPHY UNIVERSITY OF GRONINGEN OUDE BOTERINGESTRAAT 52 9712 GL GRONINGEN THE NETHERLANDS E-mail: b.p.kooi@rug.nl

Abstract

In this paper it is shown that the Verification Thesis (all truths are knowable) is only susceptible to Fitch’s Paradox if one conflates the de re and de dicto interpretation of knowability. A formalisation shows that if one treats knowability as a complex second-order predicate, then the paradox falls apart.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

BIBLIOGRAPHY

Balbiani, P., Baltag, A., van Ditmarsch, H., Herzig, A., Hoshi, T., & de Lima, T. (2008). ‘Knowable’ as ‘known after an announcement’. Review of Symbolic Logic, 1(3), 205334.CrossRefGoogle Scholar
Brogaard, B. & Salerno, J. (2012). Fitch’s paradox of knowability. In Zalta, E. N. editor. The Stanford Encyclopedia of Philosophy (Winter 2012 ed.), Available from: http://plato.stanford.edu/cgi-bin/encyclopedia/archinfo.cgi?entry=fitch-paradox.Google Scholar
Edgington, D. (1985). The paradox of knowability. Mind, 94(376), 557568.CrossRefGoogle Scholar
Fitch, F. B. (1963). A logical analysis of some value concepts. The Journal of Symbolic Logic, 28(2), 135142.CrossRefGoogle Scholar
Fitting, M. (1998). Higher-order modal logic — a sketch. In Automated Deduction in Classical and Non-Classical Logics, LNAI, Vol. 1761. Berlin: Springer, pp. 2328.CrossRefGoogle Scholar
Fitting, M. & Mendelsohn, R. (1998). First-order Modal Logic. Berlin: Springer.CrossRefGoogle Scholar
Fuhrmann, A. (2014). Knowability as potential knowledge. Synthese, 191(7), 16271648.CrossRefGoogle Scholar
Hasper, P. S. (2009). Logic and linguistics: Aristotle’s account of the fallacies of combination and division in the Sophistical Refutations. Apeiron, 42(2), 195–152.CrossRefGoogle Scholar
Kennedy, N. (2014). Defending the possibility of knowledge. Journal of Philosophical Logic, 43(2,3), 579601.CrossRefGoogle Scholar
Kvanvig, J. (1995). The knowability paradox and the prospects for anti-realism. Noûs, 29(4), 481500.CrossRefGoogle Scholar
Kvanvig, J. (2006). The Knowability Paradox. Oxford: Oxford University Press.CrossRefGoogle Scholar
Plaza, J. (1989). Logics of public communications. In Emrich, M. L., Pfeifer, M. S., Hadzikadic, M., and Ras, Z. W. editors. Proceedings of the 4th International Symposium on Methodologies for Intelligent Systems (ISMIS 1989): Poster Session Program. Charlotte: Oak Ridge National Laboratory ORNL/DSRD-24, pp. 201216.Google Scholar
Smith, P. (2007). An Introduction to Gödel’s Theorems. Cambridge: Cambridge University Press.Google Scholar
Stalnaker, R. C. & Thomason, R. H. (1968). Abstraction in first-order modal logic. Theoria, 34, 203207.CrossRefGoogle Scholar
Thomason, R. H. & Stalnaker, R. C. (1968). Modality and reference. Noûs, 2(4), 359372.CrossRefGoogle Scholar
van Benthem, J. (2004). What one may come to know. Analysis, 64(2), 95105.CrossRefGoogle Scholar
van Benthem, J. (2009). Actions that make us know. In Salerno, J. editor. New Essays on the Knowability Paradox, Chapter 9. Oxford: Oxford University Press.Google Scholar