Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-10T21:31:41.717Z Has data issue: false hasContentIssue false

BOLZANO’S MATHEMATICAL INFINITE

Published online by Cambridge University Press:  22 February 2021

ANNA BELLOMO*
Affiliation:
INSTITUTE FOR LOGIC, LANGUAGE, AND COMPUTATION UNIVERSITY OF AMSTERDAM AMSTERDAM, THE NETHERLANDS
GUILLAUME MASSAS
Affiliation:
GROUP IN LOGIC AND THE METHODOLOGY OF SCIENCE UNIVERSITY OF CALIFORNIA, BERKELEY BERKELEY, CA, USA E-mail: gmassas@berkeley.edu
*
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Bernard Bolzano (1781–1848) is commonly thought to have attempted to develop a theory of size for infinite collections that follows the so-called part–whole principle, according to which the whole is always greater than any of its proper parts. In this paper, we develop a novel interpretation of Bolzano’s mature theory of the infinite and show that, contrary to mainstream interpretations, it is best understood as a theory of infinite sums. Our formal results show that Bolzano’s infinite sums can be equipped with the rich and original structure of a non-commutative ordered ring, and that Bolzano’s views on the mathematical infinite are, after all, consistent.

Type
Research Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press on behalf of The Association for Symbolic Logic

References

BIBLIOGRAPHY

Apostol, T. (1974). Mathematical Analysis (second edition). Reading, MA: Addison-Wesley.Google Scholar
Bell, J. L. & Slomson, A. B. (1974). Models and Ultraproducts: An Introduction. Third revised printing. Amsterdam and Oxford, and New York: North Holland and American Elsevier.Google Scholar
Benci, V. & Di Nasso, M. (2003). Numerosities of labelled sets: A new way of counting. Advances in Mathematics, 173(1), 5067.CrossRefGoogle Scholar
Benci, V. & Di Nasso, M.. (2019). How to Measure the Infinite: Mathematics with Infinite and Infinitesimal Numbers. Singapore: World Scientific Publishing Company.CrossRefGoogle Scholar
Berg, J. (1962). Bolzano’s Logic. Stockholm: Almqvist & Wiksell.Google Scholar
Berg, J. (1992). Ontology Without Ultrafilters and Possible Worlds—An Examination of Bolzano’s Ontology. Sankt Augustin: Academia Verlag.Google Scholar
Bolzano, B. (1817). Rein analytischer Beweis des Lehrsatzes, dass zwischen je zwey Werthen, die ein entgegengesetztes Resultat gewähren, wenigstens eine reelle Wurzel der Gleichung liege. Prag: Gottlieb Haase. English translation: Russ, S., editor. (2004). The Mathematical Works of Bernard Bolzano. Oxford: Oxford University Press, pp. 251279.Google Scholar
Bolzano, B.. (1837). Wissenschaftslehre. Sulzbach: Seidel.Google Scholar
Bolzano, B.. (1851). Paradoxien des Unendlichen. Edited by Příhonský, F.. English translation: Russ, S., editor. (2004). The Mathematical Works of Bernard Bolzano. Oxford: Oxford University Press, pp. 591679, and Bolzano, B. (1950). In Steele, D. A., editor. Paradoxes of the Infinite. London: Kegan Paul.Google Scholar
Bolzano, B.. (1920). In Hahn, H., editor. Paradoxien des Unendlichen. Leipzig: Felix Meiner Verlag.Google Scholar
Bolzano, B.. (1950). In Steele, D. A., editor. Paradoxes of the Infinite. London: Kegan Paul.Google Scholar
Bolzano, B.. (1975). In Berg, J., editor. Einleitung zur Grössenlehre. Erste Begriffe der allgemeinen Grössenlehre, Vol. 2A/7 (Bernard Bolzano Gesamtausgabe). Reihe II: Nachlass. Stuttgart—Bad Cannstatt: Frohmann-Holzboog.Google Scholar
Bolzano, B.. (1976). In Berg, J., editor. Reine Zahlenlehre, Vol. 2A/8 (Bernard Bolzano Gesamtausgabe). Reihe II: Nachlass. Stuttgart—Bad Cannstatt: Frohmann-Holzboog.Google Scholar
Bolzano, B.. (1978). In Berg, J., editor. Vermischte philosophische und physikalische Schriften 1832–1848. Zweiter Teil, Vol. 2A/12.2 (Bernard Bolzano Gesamtausgabe). Reihe II: Nachlass. Stuttgart—Bad Cannstatt: Frohmann-Holzboog.Google Scholar
Bolzano, B.. (2012). In Tapp, C., editor. Paradoxien des Unendlichen. Hamburg: Felix Meiner Verlag.CrossRefGoogle Scholar
Cantor, G. (1932). Über unendliche, lineare Punktmannichfaltigkeiten—5 (Fortsetzung des Artikels in Bd. XXI, pag. 51). Mathematische Annalen (Leipzig), 21(4), 545591 in Zermelo, E. editor. Abhandlungen mathematischen und philosophischen Inhalts. Berlin and Heidelberg: Springer Verlag.CrossRefGoogle Scholar
Dedekind, R. (1888). Was sind und was sollen die Zahlen. Braunschweig: Vieweg. Revised English translation: Dedekind, R. (1995). In Pogorzelski, H., Ryan, W., and Snyder, W., editors. What Are Numbers and What Should They Be? Orono, ME: Research Institute for Mathematics.Google Scholar
Ferreirós, J. (2007). Labyrinth of Thought—A History of Set Theory and Its Role in Modern Mathematics (second revised edition). Basel, Boston, MA, and Berlin: Birkhäuser.Google Scholar
Florio, S. & Leach-Krouse, G. (2017). What Russell should have said to Burali–Forti. The Review of Symbolic Logic, 10(4), 682718. doi:10.1017/S1755020316000484.CrossRefGoogle Scholar
Galilei, G. (1958). In Geymonat, L. and Carugo, A., editors. Discorsi e dimostrazioni matematiche intorno a due nuove scienze. Torino: Boringhieri.Google Scholar
Hallett, M. (1984). Cantorian Set Theory and Limitation of Size. Oxford Logic Guides, Vol. 10. Oxford: Clarendon Press.Google Scholar
Hodges, W. (1993). Model Theory. Encyclopedia of Mathematics and Its Applications, Vol. 42. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Incurvati, L. (2020). Conceptions of Set and the Foundations of Mathematics. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Kline, M. (1983). Euler and infinite series. Mathematics Magazine, 56(5), 307314.CrossRefGoogle Scholar
Lapointe, S. (2011). Bolzano’s Theoretical Philosophy. Hampshire: Palgrave Macmillan.CrossRefGoogle Scholar
M.R.S. (1830). Analyse algébrique. Note sur quelques expressions algeébriques peu connues. Gergonne’s Annales, 20, 352366.Google Scholar
Mancosu, P. (1996). Philosophy of Mathematics and Mathematical Practice in the Seventeenth Century. New York and Oxford: Oxford University Press.Google Scholar
Mancosu, P.. (2009). Measuring the size of infinite collections of natural numbers: Was Cantor’s theory of infinite number inevitable? The Review of Symbolic Logic, 2(4), 612646. doi:10.1017/S1755020309990128.CrossRefGoogle Scholar
Mancosu, P.. (2016). Abstraction and Infinity. Oxford: Oxford University Press.CrossRefGoogle Scholar
Rusnock, P. (2000). Bolzano’s Philosophy and the Emergence of Modern Mathematics. Amsterdam and Atlanta, GA: Rodopi.CrossRefGoogle Scholar
Russ, S., editor. (2004). The Mathematical Works of Bernard Bolzano. Oxford: Oxford University Press.Google Scholar
Russ, S. & Trlifajová, K. (2016). Bolzano’s measurable numbers: Are they real? In Zack, M. and Landry, E., editors. Research in History and Philosophy of Mathematics. Proceedings of the Canadian Society for History and Philosophy of Mathematics/La Société Canadienne d’Histoire et de Philosophie des Mathématiques. Cham: Birkhäuser, pp. 3956.CrossRefGoogle Scholar
Schröder, E. (1873). Lehrbuch der Arithmetik und Algebra. Leipzig: Teubner.Google Scholar
Šebestík, J. (1992). Logique et Mathématique chez Bernard Bolzano. Paris: Vrin.Google Scholar
Šebestík, J.. (2017). Bolzano’s logic. In Zalta, E. N., editor. The Stanford Encyclopedia of Philosophy (Fall 2017 edition). Stanford, CA: Metaphysics Research Lab, Stanford University. Available from: https://plato.stanford.edu/archives/fall2017/entries/bolzano-logic/.Google Scholar
Simons, P. (1997). Bolzano on collections. Grazer Philosophische Studien, 53(1), 87108.Google Scholar
Spalt, D. D. (1991). Bolzanos Lehre von den messbaren Zahlen 1830–1989. Archive for the History of the Exact Sciences, 42(1), 1670.CrossRefGoogle Scholar
Trlifajová, K. (2018). Bolzano’s infinite quantities. Foundations of Science, 23(4), 681704. ISSN:1572-8471. doi:10.1007/s10699-018-9549-z.CrossRefGoogle Scholar
van Rootselaar, B. (1964). Bolzano’s theory of real numbers. Archive for the History of the Exact Sciences, 2, 168180.CrossRefGoogle Scholar