Hostname: page-component-54dcc4c588-nx7b4 Total loading time: 0 Render date: 2025-10-04T16:44:18.470Z Has data issue: false hasContentIssue false

THE GENERIC MULTIVERSE IS NOT GOING AWAY

Part of: Set theory

Published online by Cambridge University Press:  27 December 2024

DOUGLAS BLUE*
Affiliation:
DEPARTMENT OF PHILOSOPHY UNIVERSITY OF PITTSBURGH PITTSBURGH, PA USA

Abstract

The generic multiverse was introduced in [74] and [81] to explicate the portion of mathematics which is immune to our independence techniques. It consists, roughly speaking, of all universes of sets obtainable from a given universe by forcing extension. Usuba recently showed that the generic multiverse contains a unique definable universe, assuming strong large cardinal hypotheses. On the basis of this theorem, a non-pluralist about set theory could dismiss the generic multiverse as irrelevant to what set theory is really about, namely that unique definable universe. Whatever one’s attitude towards the generic multiverse, we argue that certain impure proofs ensure its ongoing relevance to the foundations of set theory. The proofs use forcing-fragile theories and absoluteness to prove ${\mathrm {ZFC}}$ theorems about simple “concrete” objects.

Information

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of The Association for Symbolic Logic

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

BIBLIOGRAPHY

Arana, A. (2008). On formally measuring and eliminating extraneous notions in proofs. Philosophia Mathematica, 17(2), 189207.10.1093/philmat/nkn015CrossRefGoogle Scholar
Arana, A (2008). Logical and semantic purity. Protosociology, 25, 3648.10.5840/protosociology2008253CrossRefGoogle Scholar
Arana, A (2017). On the alleged simplicity of impure proof. In Kossak, R. and Ording, P., editors. Simplicity: Ideals of Practice in Mathematics and the Arts. Cham: Springer International Publishing, pp. 205226.Google Scholar
Arana, A (2022). Purity and explanation: Essentially linked? In Posy, C. J. and Ben-Menahem, Y., editors. Mathematical Knowledge, Objects and Applications: Essays in Memory of Mark Steiner. Cham: Springer International Publishing, pp. 2539.Google Scholar
Arana, A., & Detlefsen, M. (2011), Purity of Methods, Philosopher’s Imprint, Ann Arbor, Michigan: Michigan Publishing.Google Scholar
Ax, J. & Kochen, S. (1965). Diophantine problems over local fields I. American Journal of Mathematics, 87(3), 605630.CrossRefGoogle Scholar
Baron, S., Colyvan, M., & Ripley, D. (2017). How Mathematics can Make a Difference, Philosophers’ Imprint, 17(3), Ann Arbor, Michigan: Michigan Publishing, 119.Google Scholar
Baron, S., Colyvan, M., & Ripley, D (2020). A counterfactual approach to explanation in mathematics. Philosophia Mathematica, 28(1), 134.10.1093/philmat/nkz023CrossRefGoogle Scholar
Barton, N. (2020). Forcing and the universe of sets: Must we lose insight? Journal of Philosophical Logic, 49(4), 575612.10.1007/s10992-019-09530-yCrossRefGoogle Scholar
Baumgartner, J., & Hajnal, A. (1973). A proof (involving Martin’s axiom) of a partition relation. Fundamenta Mathematicae, 3(78), 193203.10.4064/fm-78-3-193-203CrossRefGoogle Scholar
Blue, D. (2024). What is it to be a solution to Cantor’s Continuum Problem? Forthcoming, Journal of Philosophy.Google Scholar
Burgess, J. P. (1974). Infinitary Languages and Descriptive Set Theory. Ph.D. thesis, University of California, Berkeley.Google Scholar
Burgess, J. P. (1978). Equivalences generated by families of Borel sets. Proceedings of the American Mathematical Society, 69(2), 323326.10.1090/S0002-9939-1978-0476524-6CrossRefGoogle Scholar
Calderoni, F., & Thomas, S. (2018). The bi-embeddability relation for countable abelian groups. Transactions of the American Mathematical Society, 371(3), 22372254.10.1090/tran/7513CrossRefGoogle Scholar
Cieśla, T., & Sabok, M. (2022). Measurable Hall’s theorem for actions of abelian groups. Journal of the European Mathematicsl Society, 24(8), Zürich: European Mathematical Society, 27512773.Google Scholar
Cohen, P. J. (2008). Set Theory and the Continuum Hypothesis. Mineola, New York: Dover Publications, Inc.Google Scholar
Dawson, J. W. (2006). Why do mathematicians re-prove theorems? Philosophia Mathematica, 14(3), 269286.10.1093/philmat/nkl009CrossRefGoogle Scholar
Dawson, J. W Jr.. (2015). Why Prove it Again?: Alternative Proofs in Mathematical Practice. Cham: Birkhäuser, Cham.10.1007/978-3-319-17368-9CrossRefGoogle Scholar
Denef, J. (2016). Geometric proofs of theorems of Ax-Kochen and Ersov, 138(1), 181199. https://doi.org/10.1353/ajm.2016.0008.CrossRefGoogle Scholar
Dobrinen, N. (2017). Forcing in Ramsey theory. RIMS Kokyuroku, 2042, 1733.Google Scholar
Dobrinen, N., & Hathaway, D. (2017). The Halpern–Läuchli theorem at a measurable cardinal. The Journal of Symbolic Logic, 82(4), 15601575.10.1017/jsl.2017.31CrossRefGoogle Scholar
Dobrinen, N., & Hathaway, D (2020). Forcing and the halpern–läuchli theorem. The Journal of Symbolic Logic, 85(1), 87102,10.1017/jsl.2019.59CrossRefGoogle Scholar
Erdos, P., & Rado, R. (1952). Combinatorial theorems on classifications of subsets of a given set. Proceedings of the London Mathematical Society, 3(1), 417439.Google Scholar
Farah, I., & Todorčević, S., (1993). Some Applications of the Method of Forcing. Moscow: Yenisei.Google Scholar
Feferman, S. (1964). Systems of predicative analysis. The Journal of Symbolic Logic, 29(1), 130.10.2307/2269764CrossRefGoogle Scholar
Ferenczi, V., & Rosendal, C. (2005). Ergodic Banach spaces. Advances in Mathematics, 195(1), 259282.10.1016/j.aim.2004.08.008CrossRefGoogle Scholar
Ferenczi, V., Louveau, A., & Rosendal, C. (2009). The complexity of classifying separable Banach spaces up to isomorphism. Journal of the London Mathematical Society, 79(2), 323345.10.1112/jlms/jdn068CrossRefGoogle Scholar
Field, H. (1998). Which undecidable mathematical sentences have determinate truth values. In Dales, H. G. and Oliveri, G., editors. Truth in Mathematics, Oxford: Clarendon, 291310.10.1093/oso/9780198514763.003.0016CrossRefGoogle Scholar
Fremlin, D. (1997). On compact spaces carrying Radon measures of uncountable Maharam type. Fundamenta Mathematicae, 154(3), 295304.10.4064/fm-154-3-295-304CrossRefGoogle Scholar
Friedman, H. Concrete mathematical incompleteness. Forthcoming.Google Scholar
Fuchs, G., Hamkins, J. D., & Reitz, J. (2015). Set-theoretic geology. Annals of Pure and Applied Logic, 166(4), 464501.10.1016/j.apal.2014.11.004CrossRefGoogle Scholar
Galvin, F. (1975). On a partition theorem of Baumgartner and Hajnal. Colloquia Mathematica Societatis János Bolyai, 10, 711729.Google Scholar
Gao, S., Jackson, S., Krohne, E., & Seward, B. (2022). Forcing constructions and countable Borel equivalence relations. The Journal of Symbolic Logic, 87(3), 873893. https://doi.org/10.1017/jsl.2022.23.CrossRefGoogle Scholar
Timothy Gowers, W. (2002). An infinite Ramsey theorem and some Banach-space dichotomies. Annals of Mathematics, 797833.10.2307/3597282CrossRefGoogle Scholar
Gurevich, Y., & Shelah, S., (1983). Rabin’s uniformization problem 1. The Journal of Symbolic Logic, 48(4), 11051119.10.2307/2273673CrossRefGoogle Scholar
Hajnal, A., & Larson, J. A. (2010). Partition relations. In Foreman, M. and Kanamori, A., editors. Handbook of Set Theory, Dordrecht: Springer, pp. 129213.10.1007/978-1-4020-5764-9_3CrossRefGoogle Scholar
Halpern, J. D., & Läuchli, H.. (1966). A partition theorem. Transactions of the American Mathematical society, 124(2), 360367.10.1090/S0002-9947-1966-0200172-2CrossRefGoogle Scholar
Hamkins, J. D. (2012). The set-theoretic multiverse. The Review of Symbolic Logic, 5(3), 416449.10.1017/S1755020311000359CrossRefGoogle Scholar
Hamkins, J. D. (2016). Upward closure and amalgamation in the generic multiverse of a countable model of set theory. RIMS Kokyuroku 1988: 1730. Proceedings of Recent Developments in Axiomatic Set Theory, Research Institute for Mathematical Sciences, Kyoto University.Google Scholar
Harrington, L., & Shelah, S. (1982). Counting equivalence classes for co- $\kappa$ -souslin equivalence relations. Studies in Logic and the Foundations of Mathematics, 108, 147152.Google Scholar
Harrington, L., Marker, D., & Shelah, S. (1988). Borel orderings. Transactions of the American Mathematical Society, 310(1), 293302.10.1090/S0002-9947-1988-0965754-3CrossRefGoogle Scholar
Hinkis, A. (2013). Proofs of the Cantor-Bernstein Theorem. Basel, Switzerland: Springer.10.1007/978-3-0348-0224-6CrossRefGoogle Scholar
Hjorth, G., (1998). An absoluteness principle for Borel sets. The Journal of Symbolic Logic, 63(2), 663693.10.2307/2586857CrossRefGoogle Scholar
Glazer, E. What Notable Theorems Cannot be Automatically Proven Without Choice Using Shoenfield Absoluteness? MathOverflow. Available from: https://mathoverflow.net/q/454358.Google Scholar
Jech, T. (2013). Set Theory. Heidelberg: Springer Science & Business Media.Google Scholar
Kechris, A. S. (1991). Amenable equivalence relations and turing degrees. The Journal of symbolic logic, 56(1), 182194.10.2307/2274913CrossRefGoogle Scholar
Kreisel, G. (1980). Biographical Memoirs of Fellows of the Royal Society. 26, London: Royal Society, London. 148224.Google Scholar
Lange, M. (2016). Because Without Cause: Non-Casual Explanations in Science and Mathematics. New York: Oxford University Press.10.1093/acprof:oso/9780190269487.001.0001CrossRefGoogle Scholar
Larson, P. B. (2009). The filter dichotomy and medial limits. Journal of Mathematical Logic, 9(2), 159165.10.1142/S0219061309000872CrossRefGoogle Scholar
Larson, P. B., & Zapletal, J. (2020). Geometric Set Theory, Vol. 248. Providence, Rhode Island: American Mathematical Society.10.1090/surv/248CrossRefGoogle Scholar
Laskowski, M. C. (1992). Vapnik-Chervonenkis classes of definable sets. Journal of the London Mathematical Society, 2(2), 377384.10.1112/jlms/s2-45.2.377CrossRefGoogle Scholar
Laver, R. (2007). Certain very large cardinals are not created in small forcing extensions. Annals of Pure and Applied Logic, 149(1–3), 16.10.1016/j.apal.2007.07.002CrossRefGoogle Scholar
Maddy, P., & Meadows, T. (2020). A reconstruction of steel’s multiverse project. Bulletin of Symbolic Logic, 26(2), 118169.10.1017/bsl.2020.5CrossRefGoogle Scholar
Malliaris, M., & Shelah, S. (2016). Cofinality spectrum theorems in model theory, set theory, and general topology. Journal of the American Mathematical Society, 29(1), 237297.10.1090/jams830CrossRefGoogle Scholar
Marks, A.(2022). Hjorth’s turbulence theorem. Preprint. Available from: https://math.berkeley.edu/~marks/.Google Scholar
Martin, D. A. (1976). Hilbert’s first problem: The continuum hypothesis. Mathematical Developments Arising from Hilbert’s Problems, 28, 8192.10.1090/pspum/028.1/0434826CrossRefGoogle Scholar
Martin, D. A., & Solovay, R. M. (1969). A basis theorem for ${\varSigma}_3^1$ sets of reals. Annals of Mathematics, 89(1), 138159.10.2307/1970813CrossRefGoogle Scholar
Meadows, T. (2021). Two arguments against the generic multiverse. The Review of Symbolic Logic, 14(2), 347379.10.1017/S1755020319000327CrossRefGoogle Scholar
Miller, B. D. (2012). The graph-theoretic approach to descriptive set theory. The Bulletin of Symbolic Logic, 18(4), 554575.10.2178/bsl.1804030CrossRefGoogle Scholar
Moore, J. T. (2025). The method of forcing. Topology and its Applications, 109500.Google Scholar
Normann, D.(1976). Martin’s axiom and medial functions. Mathematica Scandinavica, 38(1), 167176.10.7146/math.scand.a-11626CrossRefGoogle Scholar
Pincock, C. (2015). The unsolvability of the quintic: A case study in abstract mathematical explanation. Philosopher’s Imprint, 15(3), 119.Google Scholar
Platek, R. A. (1969). Eliminating the continuum hypothesis. The Journal of Symbolic Logic, 34(2):219225.10.2307/2271098CrossRefGoogle Scholar
Ryan, P. J. (2021). Szemerédi’s theorem: An exploration of impurity, explanation, and content. The Review of Symbolic Logic, 16(3):140.Google Scholar
Shelah, S. (1990). Classification Theory: And the Number of Non-Isomorphic Models, Vol. 92. Amsterdam: North-Holland.Google Scholar
Shelah, S. (1991). Strong partition relations below the power set: Consistency, was Sierpinski right, II? Proceedings of the Conference on Set Theory and its Applications in Honor of A. Hajnal and VT Sos, pp. 637638.Google Scholar
Shelah, S. (1994). Vive la différence II. the Ax-Kochen isomorphism theorem. Israel Journal of Mathematics, 85, 351390.10.1007/BF02758648CrossRefGoogle Scholar
Shelah, S. (2003). Logical dreams. Bull. Amer. Math. Soc., Vol. 40. Providence, Rhode Island: American Mathematical Society, pp. 203228. DOI: 10.1090/S0273-0979-03-00981-9.10.1090/S0273-0979-03-00981-9CrossRefGoogle Scholar
Sieg, W. (2019). The Cantor–Bernstein theorem: how many proofs? Philosophical Transactions of the Royal Society A, 377(2140), 20180031.10.1098/rsta.2018.0031CrossRefGoogle ScholarPubMed
Silver, J. H. (1980). Counting the number of equivalence classes of Borel and coanalytic equivalence relations. Annals of Mathematical Logic, 18(1), 128.10.1016/0003-4843(80)90002-9CrossRefGoogle Scholar
Slaman, T. A., & Steel, J. R. (1988). Definable functions on degrees. In Cabal Seminar 81–85, Springer, pp. 3755.10.1007/BFb0084969CrossRefGoogle Scholar
Solovay, R. 1985. ${2}^{{\mathrm{\aleph}}_0}$ can be anything it ought to be. In Addison, J., Henkin, L., and Tarski, A., editors. The Theory of Models: Proceedings of the 1963 International Symposium at Berkeley, Studies in Logic and the Foundations of Mathematics. Amsterdam: North-Holland, p. 435.Google Scholar
Spector, C. (1958). Measure-theoretic construction of incomparable hyperdegrees. The Journal of Symbolic Logic, 23(3), 280288.10.2307/2964288CrossRefGoogle Scholar
Steel, J.(2014). Gödel’s program. In Interpreting Gödel. Cambridge University Press, pp. 153179.10.1017/CBO9780511756306.012CrossRefGoogle Scholar
Steiner, M.(1978). Mathematical explanation. Philosophical Studies: An International Journal for Philosophy in the Analytic Tradition, 34(2), 135151.10.1007/BF00354494CrossRefGoogle Scholar
Stern, J. (1984). On Lusin’s restricted continuum problem. Annals of Mathematics, 120(1), 737.10.2307/2007070CrossRefGoogle Scholar
Thomas, S. (2009). Martin’s conjecture and strong ergodicity. Archive for Mathematical Logic, 48(8), 749.10.1007/s00153-009-0148-0CrossRefGoogle Scholar
Todorčević, S. (1999). Compact subsets of the first Baire class. Journal of the American Mathematical Society, 12(4), 11791212.10.1090/S0894-0347-99-00312-4CrossRefGoogle Scholar
Usuba, T.(2017). The downward directed grounds hypothesis and very large cardinals. Journal of Mathematical Logic, 17(02), 1750009.10.1142/S021906131750009XCrossRefGoogle Scholar
von Neumann, J.(1925). An axiomatization of set theory. In van Heijenhoort, J., editor. From Frege to Gödel. Cambridge, MA: Harvard University Press, 393413.Google Scholar
Hugh Woodin, W. (2009). The continuum hypothesis, the generic multiverse of sets, and the $\varOmega$ conjecture. In Set Theory, Arithmetic, and Foundations of Mathematics: Theorems, Philosophies, Vol. 36, pp. 1342.Google Scholar
Hugh Woodin, W (2017). In search of ultimate-l the 19th midrasha mathematicae lectures. Bulletin of Symbolic Logic, 23(1), 1109.10.1017/bsl.2016.34CrossRefGoogle Scholar