Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-10T23:22:47.506Z Has data issue: false hasContentIssue false

PROOF-THEORETIC ANALYSIS OF THE QUANTIFIED ARGUMENT CALCULUS

Published online by Cambridge University Press:  10 June 2019

EDI PAVLOVIĆ*
Affiliation:
Department of Philosophy, History and Art Studies, University of Helsinki
NORBERT GRATZL*
Affiliation:
Fakultät Für Philosophie, Wissenschaftstheorie Und Religionswissenschaft, Munich Center for Mathematical Philosophy (MCMP), Ludwig-Maximilians-Universität München
*
*DEPARTMENT OF PHILOSOPHY, HISTORY AND ART STUDIES UNIVERSITY OF HELSINKI P.O. BOX 24 FI-00014 HELSINKI, FINLAND E-mail: Edi.Pavlovic@helsinki.fi
FAKULTÄT FÜR PHILOSOPHIE WISSENSCHAFTSTHEORIE UND RELIGIONSWISSENSCHAFT MUNICH CENTER FOR MATHEMATICAL PHILOSOPHY (MCMP) LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN GESCHWISTER-SCHOLL-PLATZ 1, D-80539 MÜNCHEN, GERMANY E-mail: N.Gratzl@lmu.de

Abstract

This article investigates the proof theory of the Quantified Argument Calculus (Quarc) as developed and systematically studied by Hanoch Ben-Yami [3, 4]. Ben-Yami makes use of natural deduction (Suppes-Lemmon style), we, however, have chosen a sequent calculus presentation, which allows for the proofs of a multitude of significant meta-theoretic results with minor modifications to the Gentzen’s original framework, i.e., LK. As will be made clear in course of the article LK-Quarc will enjoy cut elimination and its corollaries (including subformula property and thus consistency).

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

BIBLIOGRAPHY

Baaz, M. & Leitsch, A. (2011). Methods of Cut-Elimination. Trends in Logic, Vol. 34. Dordrecht: Springer.Google Scholar
Bencivenga, E. (2002). Free logics. In Gabbay, D. and Guenthner, F., editors. Handbook of Philosophical Logic, Second Edition, Vol. 5. Dordrecht: Springer, pp. 147196.CrossRefGoogle Scholar
Ben-Yami, H. (2014). The Quantified Argument Calculus. The Review of Symbolic Logic, 7, 120146.CrossRefGoogle Scholar
Ben-Yami, H. (2004). Logic and Natural Language. Aldershot: Ashgate.Google Scholar
Ben-Yami, H. & Pavlovic, E. (2015). Completeness of the Quantified Argument Calculus, manuscript.Google Scholar
Buss, S. (1998). An introduction to proof theory. In Buss, S., editor. Handbook of Proof Theory. Amsterdam: Elsevier, pp. 178.Google Scholar
Gentzen, G. (1969). An introduction to proof theory. In Szabo, M., editor. The Collected Papers of Gerhard Gentzen. Amsterdam: North-Holland, pp. 68131.Google Scholar
Gratzl, N. (2010). A sequent calculus for a negative free logic. Studia Logica, 96, 331348.CrossRefGoogle Scholar
Kleene, S. C. (2000). Introduction to Metamathematics (thirteenth edition). Groningen: Wolters-Noordhoff Publishing.Google Scholar
Lambert, K. (1997). Free Logics: Their Foundations, Character, and Some Applications Thereof. Sankt Augustin: Academia Verlag.Google Scholar
Lambert, K. (2001). Free logics. In Goble, L., editor. The Blackwell Guide to Philosophical Logic. Malden, MA: Blackwell Publishers, pp. 258279.Google Scholar
Lanzet, R. & Ben-Yami, H. (2006). Logical inquiries into a new formal system with plural reference. In Hendriks, V. F., editor. First-Order Logic Revisited. Logische Philosophie, Vol. 12. Berlin: Logos Verlag, pp. 173223.Google Scholar
Negri, S. & von Plato, J. (2001). Structural Proof Theory. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Schütte, K. (1960). Beweistheorie. Berlin: Springer.Google Scholar
Takeuti, G. (1987). Proof Theory (second edition). Amsterdam: North-Holland.Google Scholar