Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-13T02:30:18.884Z Has data issue: false hasContentIssue false

STABLE MODAL LOGICS

Published online by Cambridge University Press:  27 September 2018

GURAM BEZHANISHVILI*
Affiliation:
Department of Mathematical Sciences, New Mexico State University
NICK BEZHANISHVILI*
Affiliation:
Institude for Logic, Language and Computation, University of Amsterdam
JULIA ILIN*
Affiliation:
Institude for Logic, Language and Computation, University of Amsterdam
*
*DEPARTMENT OF MATHEMATICAL SCIENCES NEW MEXICO STATE UNIVERSITY LAS CRUCES, NM 88003, USA E-mail: guram@nmsu.edu
INSTITUTE FOR LOGIC, LANGUAGE AND COMPUTATION UNIVERSITY OF AMSTERDAM P.O. BOX 94242, 1090 GE AMSTERDAM, THE NETHERLANDS E-mail: N.Bezhanishvili@uva.nl
INSTITUTE FOR LOGIC, LANGUAGE AND COMPUTATION UNIVERSITY OF AMSTERDAM P.O. BOX 94242, 1090 GE AMSTERDAM, THE NETHERLANDS E-mail: ilin.juli@gmail.com

Abstract

Stable logics are modal logics characterized by a class of frames closed under relation preserving images. These logics admit all filtrations. Since many basic modal systems such as K4 and S4 are not stable, we introduce the more general concept of an M-stable logic, where M is an arbitrary normal modal logic that admits some filtration. Of course, M can be chosen to be K4 or S4. We give several characterizations of M-stable logics. We prove that there are continuum many S4-stable logics and continuum many K4-stable logics between K4 and S4. We axiomatize K4-stable and S4-stable logics by means of stable formulas and discuss the connection between S4-stable logics and stable superintuitionistic logics. We conclude the article with many examples (and nonexamples) of stable, K4-stable, and S4-stable logics and provide their axiomatization in terms of stable rules and formulas.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

BIBLIOGRAPHY

Bezhanishvili, G. & Bezhanishvili, N. (2012). Canonical formulas for wK4. Review of Symbolic Logic, 5(4), 731762.CrossRefGoogle Scholar
Bezhanishvili, G. & Bezhanishvili, N. (2017). Locally finite reducts of Heyting algebras and canonical formulas. Notre Dame Journal of Formal Logic, 58(1), 2145.CrossRefGoogle Scholar
Bezhanishvili, G., Bezhanishvili, N., & Iemhoff, R. (2016). Stable canonical rules. Journal of Symbolic Logic, 81(1), 284315.CrossRefGoogle Scholar
Bezhanishvili, G., Bezhanishvili, N., & Ilin, J. (2016). Cofinal stable logics. Studia Logica, 104(6), 12871317.CrossRefGoogle Scholar
Bezhanishvili, G., Mines, R., & Morandi, P. J. (2008). Topo-canonical completions of closure algebras and Heyting algebras. Algebra Universalis, 58(1), 134.CrossRefGoogle Scholar
Bezhanishvili, N. (2006). Lattices of Intermediate and Cylindric Modal Logics. Ph.D. Thesis, University of Amsterdam.Google Scholar
Bezhanishvili, N. & Ghilardi, S. (2014). Multiple-conclusion rules, hypersequents syntax and step frames. In Gore, R., Kooi, B., and Kurucz, A., editors. Advances in Modal Logic (AiML 2014). London: College Publications, pp. 5461. An extended version available as ILLC Prepublication Series Report PP-2014-05.Google Scholar
Blackburn, P., de Rijke, M., & Venema, Y. (2001). Modal Logic. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Blok, W. J. & van Alten, C. J. (2002). The finite embeddability property for residuated lattices, pocrims and BCK-algebras. Algebra Universalis, 48(3), 253271.CrossRefGoogle Scholar
Bull, R. A. (1966). That all normal extensions of S4.3 have the finite model property. Zeitschrift für mathematische Logik und Grundlagen der Mathematik, 12, 341344.CrossRefGoogle Scholar
Burris, R. & Sankappanavar, H. (1981). A Course in Universal Algebra. New York: Springer.CrossRefGoogle Scholar
Chagrov, A., Wolter, F., & Zakharyaschev, M. (2001). Advanced modal logic. In Gabby, D. M., and Guenthner, F., editors. Handbook of Philosophical Logic, Vol. 3. Dordrecht: Kluwer Academic Publishers, pp. 83266.Google Scholar
Chagrov, A. & Zakharyaschev, M. (1997). Modal Logic. New York: The Clarendon Press.Google Scholar
Chang, C. C. & Keisler, H. J. (1990). Model Theory (third edition). Studies in Logic and the Foundations of Mathematics, Vol. 73. Amsterdam: North-Holland Publishing Co.Google Scholar
Conradie, W., Morton, W., & van Alten, C. J. (2013). An algebraic look at filtrations in modal logic. Logic Journal of the IGPL, 21(5), 788811.CrossRefGoogle Scholar
Ferreirim, I. M. A. (1992). On Varieties and Quasivarieties of Hoops and their Reducts, Ph.D. Thesis, University of Illinois at Chicago.Google Scholar
Fine, K. (1971). The logics containing S4.3. Zeitschrift für mathematische Logik und Grundlagen der Mathematik, 17, 371376.CrossRefGoogle Scholar
Fine, K. (1985). Logics containing K4. II. Journal of Symbolic Logic, 50(3), 619651.CrossRefGoogle Scholar
Galatos, N., Jipsen, P., Kowalski, T., & Ono, H. (2007). Residuated Lattices: An Algebraic Glimpse at Substructural Logics. Studies in Logic and the Foundations of Mathematics, Vol. 151. Amsterdam: Elsevier B. V.Google Scholar
Ghilardi, S. (2010). Continuity, freeness, and filtrations. Journal of Applied Non-Classical Logics, 20(3), 193217.CrossRefGoogle Scholar
Hughes, G. E. (1990). Every world can see a reflexive world. Studia Logica, 49(2), 175181.CrossRefGoogle Scholar
Jeřábek, E. (2009). Canonical rules. Journal of Symbolic Logic, 74(4), 11711205.CrossRefGoogle Scholar
Kracht, M. (1999). Tools and Techniques in Modal Logic. Amsterdam: North-Holland Publishing Co.Google Scholar
Kracht, M. (2007). Modal consequence relations. In Blackburn, P., van Benthem, J., and Wolter, F., editors. Handbook of Modal Logic. Amsterdam: Elsevier, pp. 491545.CrossRefGoogle Scholar
Lemmon, E. J. (1966). Algebraic semantics for modal logics. I. Journal of Symbolic Logic, 31, 4665.CrossRefGoogle Scholar
Lemmon, E. J. (1966). Algebraic semantics for modal logics. II. Journal of Symbolic Logic, 31, 191218.CrossRefGoogle Scholar
McKinsey, J. C. C. (1941). A solution of the decision problem for the Lewis systems S2 and S4, with an application to topology. Journal of Symbolic Logic, 6, 117134.CrossRefGoogle Scholar
McKinsey, J. C. C. & Tarski, A. (1944). The algebra of topology. Annals of Mathematics, 45, 141191.CrossRefGoogle Scholar
Rautenberg, W. (1980). Splitting lattices of logics. Archiv für Mathematische Logik und Grundlagenforschung, 20(3–4), 155159.CrossRefGoogle Scholar
Rybakov, V. V. (1997). Admissibility of Logical Inference Rules. Amsterdam: North-Holland Publishing Co.Google Scholar
Sambin, G. (1999). Subdirectly irreducible modal algebras and initial frames. Studia Logica, 62(2), 269282.CrossRefGoogle Scholar
Segerberg, K. (1971). An Essay in Classical Modal Logic. Vols. 1, 2, 3. Uppsala: Filosofiska Föreningen och Filosofiska Institutionen vid Uppsala Universitet.Google Scholar
Venema, Y. (2004). A dual characterization of subdirectly irreducible BAOs. Studia Logica, 77(1), 105115.CrossRefGoogle Scholar
Venema, Y. (2007). Algebras and coalgebras. In Blackburn, P., van Benthem, J., and Wolter, F., editors. Handbook of Modal Logic. Amsterdam: Elsevier, pp. 331426.CrossRefGoogle Scholar
Wolter, F. (1993). Lattices of Modal Logics. Ph.D. Thesis, Free University of Berlin.Google Scholar
Zakharyaschev, M. (1992). Canonical formulas for K4. I. Basic results. Journal of Symbolic Logic, 57(4), 13771402.CrossRefGoogle Scholar
Zakharyaschev, M. (1996). Canonical formulas for K4. II. Cofinal subframe logics. Journal of Symbolic Logic, 61(2), 421449.CrossRefGoogle Scholar
Zakharyaschev, M. (1997). Canonical formulas for modal and superintuitionistic logics: A short outline. In de Rijke, M., editor. Advances in Intensional Logic. Applied Logic Series, Vol. 7. Dordrecht: Kluwer Academic Publishers, pp. 195248.CrossRefGoogle Scholar