Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-28T02:46:33.148Z Has data issue: false hasContentIssue false

The normal ageing kidney – morphology and physiology

Published online by Cambridge University Press:  01 August 2008

Juan-F. Macías Núñez*
Affiliation:
Faculty of Medicine, University of Salamanca, Spain
*
Address for correspondence: Juan-F. Macías Núñez, Departamento de Medicina, C/Alfonso X El Sabio, 37007 Salamanca, Spain. Email: jfmacias@usal.es

Extract

This paper will review some fundamentals of normal renal physiology necessary to understand the changes occurring with age and enable the reader to distinguish between chronic renal insufficiency and the consequences of normal ageing on kidney function.

Type
Biological gerontology
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1McLachlan, M. Anatomic structural and vascular changes in the aging kidney. In: Cameron, JS, Macias Núñez, JF (eds), Renal Function and Disease in the Elderly. Butterworths, London, UK. 1987; pp. 326.CrossRefGoogle Scholar
2Furno, A. Ricerche anatomo-patologiche intorno al rene atrofico senile. La Sperimentale 1909; 63: 99129.Google Scholar
3Griffiths, GJ, Robinson, KB, Cartwright, GO, McLachan, MSF. Loss of renal tissue in the elderly. Br J Radiology 1976; 49: 111–7.CrossRefGoogle ScholarPubMed
4Silva, FG. The aging kidney: a review – part I. Int Urol Nephrol 2005; 37: 185205.CrossRefGoogle Scholar
5Councilman, WT. The conditions presented in the heart and in the kidneys of old people. In: Contributions to Medical Bological Research, dedicated to Sir William Osler. Hoeber, New York, USA. 1919; pp. 918–28.Google Scholar
6Ishikawa, I, Onouchi, Z, Saito, Y et al. Renal cortex visualization and analysis of dynamic CT curves of the kidney. J Comp Assist Tomography 1981; 5: 695701.CrossRefGoogle ScholarPubMed
7Keresztury, S, Megyeri, L. Histology of renal pyramids with especial regard to changes due to ageing. Acta Morphologica 1962; 11: 205–15.Google Scholar
8McLachlan, MSF, Kaplan, RA. Aging and renal sinus fat. Am J Roentgenol 1981; 137: 200.Google Scholar
9Tada, S, Yamagishi, J, Kobayashi, H, Hata, Y, Kobari, T. The incidence of simple renal cysts by computed tomography. Clin Radiol 1983; 34: 437–9.CrossRefGoogle ScholarPubMed
10Dunnill, RS, Halley, W. Some observations on the quantitative anatomy of the kidney. J Pathol 1973; 110: 113–20.CrossRefGoogle ScholarPubMed
11McLachlan, MS, Guthrie, JC, Anderson, CK, Fulker, MJ. Vascular and glomerular changes in the ageing kidney. J Pathol 1977; 121: 6577.CrossRefGoogle ScholarPubMed
12Gourtsoyiannis, N, Prassopoulos, P, Cavouras, D et al. The thickness of the renal parenchyma decreases with age: a CT study of 360 patients. Am J Roentgenol 1990; 155: 541–4.CrossRefGoogle Scholar
13McLachlan, MSF, Wasserman, P. Changes in size and distensibility of the aging kidney. Br J Radiology 1981; 45: 488–91.CrossRefGoogle Scholar
14Wainwright, J. Atheroma in the African (Bantu) in Natal. Lancet 1961; 1: 366–8.CrossRefGoogle Scholar
15Moritz, AR, Oldt, MR. Arteriolar sclerosis in hypertensive and nonhypertensive individuals. Am J Pathol 1937; 13: 679728.Google Scholar
16Smith, JP. Hyaline arteriosclerosis in the kidney. J Pathol Bacteriol 1955; 69: 147–68.CrossRefGoogle ScholarPubMed
17Williams, RH, Harrison, TR. A study of the renal arteries in relation to age and to hypertension. Am Heart J 1937; 14: 645–58.CrossRefGoogle Scholar
18Bell, ET. In: Renal Disease. Lea and Febiger, Philadelphia. 1950; pp. 331346.Google Scholar
19Ljungqvist, A, Lagergren, C. Normal intrarenal arterial pattern in adult and ageing human kidney. J Anat London 1962; 96: 285300.Google ScholarPubMed
20Davidson, AJ, Talner, LB, Downs, M. A study of the angiographic appearances of the kidney in an aging normotensive population. Radiology 1969; 92: 975–83.CrossRefGoogle Scholar
21Hollenberg, NK, Adams, DF, Solomon, HS et al. Senescence and the renal vasculature in normal man. Circ Res 1974; 34: 309316.CrossRefGoogle ScholarPubMed
22Zhou, XJ, Laszik, ZG, Silva, FG. Anatomical chenages in the ageing kidney. In: Macias Núñez, JF, Cameron, JS and Oreopoulos, DG (eds), The Aging Kidney in Health and Disease. Springer, New York, USA. 2008; pp. 3954.CrossRefGoogle Scholar
23Tracy, RE, Malcom, GT, Oalmann, MC et al. Renal microvascular features of hypertension in Japan, Guatemala and the United States. Arch Path Lab Med 1992; 116: 50–5.Google ScholarPubMed
24Silva, FG. The aging kidney: a review – part II. Int Urol Nephrol 2005; 37: 419–32.CrossRefGoogle Scholar
25Nadasdy, T, Laszik, Z, Blick, Ke, Johnson, DL, Silva, FG. Tubular atrophy in the end-stage kidney: A lectin and immunohistochemical study. Human Path 1994; 25: 22–8.CrossRefGoogle Scholar
26Zhou, XJ, Saxena, R, Liu, Z, Vaziri, ND, Silva, FG. Renal senescence in 2008: progress and challenges. Int Urol Nephrol 2008; 40: 823–39.CrossRefGoogle ScholarPubMed
27Oliver, J, Macdowell, M. The structural and functional aspects of the handling of glucose by the nephrons and the kidney and their correlations by means of structural-functional equivalents. J Clin Invest 1961; 40: 1093–112.CrossRefGoogle ScholarPubMed
28Oliver, JR. In: Cowdry's Problems of Aging. Williams and Wilkins, Baltimore. 1950; pp. 631–50.Google Scholar
29Darmady, EM, Offer, J, Woodhouse, MA. The parameters of the ageing kidney. J Pathol 1973; 109: 195207.CrossRefGoogle ScholarPubMed
30Dunnil, RS, Halley, W. Some observations of the quantitative anatomy of the kidney. J Pathol 1973; 10: 113–20.CrossRefGoogle Scholar
31Kappel, N, Olsen, S. Cortical interstitial tissue and sclerosed glomeruli in the normal human kidney, related to age and sex. Virchows Archiv: Pathologie Histologie 1980; 387: 271–7.CrossRefGoogle ScholarPubMed
32Moore, RA. The total number of glomeruli in the normal human kidney. Anatom Rec 1931; 48: 153–68.CrossRefGoogle Scholar
33Elias, H, Henning, A, Schwartz, DE. Steorology: application to biomedical research. Physiol Rev 1971; 51: 158200.CrossRefGoogle Scholar
34Hughson, MD, Douglas-Denton, R, Bertram, JF, Hoy, WE. Hypertension, glomerular number, and birth weight in African Americans and White subjects in the Southeastern United States. Kidney Int 2006; 69: 671–8.CrossRefGoogle ScholarPubMed
35Newbold, KM, Sandison, A, Howie, AJ. Comparison of size of juxtamedullary and outer cortical glomeruli in normal adult kidney. Virchows Archiv: Pathol Anat Histopathol 1992; 420: 127–9.CrossRefGoogle ScholarPubMed
36Hughson, M, Farris, AB III, Douglas-Denton, R, Hoy, WE, Bertram, JF. Glomerular number and size in autopsy kidneys: the relationship to birth weight. Kidney Int 2003; 63: 2113–22.CrossRefGoogle ScholarPubMed
37Samuel, T, Hoy, WE, Douglas-Denton, R, Hughson, MD, Bertram, JF. Determinants of glomerular volume in different cortical zones of the human kidney. J Am Soc Nephrol 2005; 16: 3102–9.CrossRefGoogle ScholarPubMed
38Remuzzi, A, Mazerska, M, Gephardt, GN et al. Three-dimensional analysis of glomerular morphology in patients with subtotal nephrectomy. Kidney Int 1995; 48: 155–62.CrossRefGoogle ScholarPubMed
39Kaplan, C, Pasternack, B, Shah, H, Gallo, G. Age-related incidence of sclerotic glomeruli in human kidneys. Am J Pathol 1995; 80: 227–34.Google Scholar
40Ljungqvist, A, Lagergren, C. Normal intrarenal arterial pattern in adult and ageing human kidney. J Anat London 1962; 96: 285300.Google ScholarPubMed
41Takazakura, E, Sawabu, N, Handa, A et al. Intrarenal vascular change with age and disease. Kidney Int 1972; 2: 224–30.CrossRefGoogle ScholarPubMed
42Smith, SM, Hoy, WE, Cobb, L. Low incidence of glomerulosclerosis in normal kidneys. Arch Pathol Lab Med 1989; 113: 1253–5.Google ScholarPubMed
43Musso, CG, Macías-Núñez, JF. Renal diseases. In: Pathy, MSJ, Sinclair, AJ, Morley, JE (eds), Principles and Practice of Geriatric Medicine, 4th edition. Wiley, Chichester. 2005; pp. 14951508.CrossRefGoogle Scholar
44Steffes, MW, Barbosa, J, Basgen, JM et al. Quantitative glomerular morphology of the normal human kidney. Lab Invest 1983; 49: 82–6.Google ScholarPubMed
45Sorensen, FH.Quantitative studies of the renal corpuscle IV. Acta Microbiol Pathol Scand 1977; 85: 356–65.Google ScholarPubMed
46Macias-Núñez, JF, Cameron, S. The ageing kidney. In: Davison, AM et al. . (eds), Oxford Text Book of Clinical Nephrology. Oxford University Press, Oxford, UK. 2005; pp. 7385.Google Scholar
47MaCrory, WW. Developmental Nephrology. Cambridge, Massachussets, Harvard University Press, 1972.Google Scholar
48Smith, HW. Lectures on the Kidney. University Extension Division of University of Kansas, Laurense, Kansas, USA. 1943; p. 97Google Scholar
49Hernanado, Avendaño L, Lopez-Novoa, JM. Glomerular filtration and renal blood flow in the aged. In: Cameron, JS, Macias Núñez, JF (eds), Renal Function and Disease in the Elderly. Butterworths, London, UK. 1987; pp. 2748.Google Scholar
50Davies, DF, Shock, NW. Age changes in glomerular filtration rate, effective renal plasma flow and tubular excretory capacity in adult males. J Clin Invest 1950; 29: 490507.CrossRefGoogle ScholarPubMed
51Wesson, LG. Renal hemodynamics in physiological states. In: Wesson, LG (ed), Physiology of the Human Kidney. Grune and Stratton, New York, USA. 1969; p. 96.Google Scholar
52Fuiano, G, Sund, S, Mazza, G et al. Renal hemodynamic response to maximal vasodilating stimulus in healthy older subjects. Kidney Int 2001; 59: 1052–8.CrossRefGoogle ScholarPubMed
53Berglund, F. Urinary excretion patterns for substances with simultaneous secretion and reabsorption by active transport. Acta Physiol Scand 1961; 52: 276–90.CrossRefGoogle ScholarPubMed
54Sjostrom, PA, Odlind, BG, Wolgast, M. Extensive tubular secretion and reabsorption of creatinine in humans. Scand J Urol Nephrol 1988; 22: 129–31.CrossRefGoogle ScholarPubMed
55Urakami, Y, Kimura, N, Okuda, M, Inui, K. Creatinine transport by basolateral organic cation transporter hOCT2 in the human kidney. Pharm Res 2004; 21: 976–81.CrossRefGoogle ScholarPubMed
56Musso, CG, Michelángelo, H, Vilas, M et al. Creatinine reabsorption by the aged kidney. Int Urol 2009 (in press).CrossRefGoogle Scholar
57Macias Núñez, JF, Garcia, Iglesias C, Tabernero, Romo J et al. Estudio del filtrado glomerular en viejos sanos. Rev Esp Geriatr y Gerontol 1981; 16: 113–24.Google Scholar
58Macias Núñez, JF, López, Novoa J. Physiology of the healthy aging kidney. In: Macias Núñez, JF, Cameron, JS, Oreopoulos, DG (eds), The Aging Kidney in Health and Disease. Springer, New York, USA. 2008; pp. 93112.CrossRefGoogle Scholar
59Evrin, P-E, Wibell, L. The serum levels and urinary excretion of 2-microglobulin in apparently healthy subjects. Scand J Clin Lab Invest 1972; 29: 6974.CrossRefGoogle Scholar
60Granerus, G, Aurell, M. Reference value for 51Cr-EDTA clearance as a measure of glomerular filtration rate. Scand J Clin Lab Invest 1981; 41: 611–6.CrossRefGoogle ScholarPubMed
61Larsson, M, Jagenburg, R, Landahl, S. Renal function in an elderly population. Scand J Clin Lab Invest 1986; 46: 593–8.CrossRefGoogle Scholar
62Xu, X, Zou, J, Ding, X, Xin, D, Ren, Y. Clinical value of serum cystatin C by Elisa for estimation of glomerular filtration rate. J Clin Lab Anal 2004; 18: 61–4.CrossRefGoogle ScholarPubMed
63Fliser, D, Ritz, E. Serum cystatin C concentration as a marker of renal dysfunction in the elderly. Am J Kidney Dis 2001; 37: 7983.CrossRefGoogle ScholarPubMed
64Knigt, EL, Verhave, JC, Spiegelman, D et al. Factors influencing serum cystatin C levels other than renal function and the impact on renal function measurement. Kidney Int 2004; 65: 1416–21.CrossRefGoogle Scholar
65Larsson, A, Helmersson, J, Hansson, LO, Basu, S. Increased serum cystatin C is associated with increased mortality in elderly men. Scand J Clin Lab Invest 2005; 65: 301–5.CrossRefGoogle ScholarPubMed
66Hojs, R, Bevc, S, Ekart, R, Gorenjak, M, Puklavec, L. Serum cystatin C-based equation compared to serum creatinine-based equations for estimation of glomerular filtration rate in patients with chronic kidney disease. Clin Nephrol 2008; 70: 1017.CrossRefGoogle ScholarPubMed
67Kimmel, PL, Lew, SQ, Bosch, JP. Nutrition, ageing and GFR: is age-associated decline inevitable? Nephrol Dialysis Transplant 1996; 11: 85–8.CrossRefGoogle ScholarPubMed
68Kampmann, J, Siersbaek-Nielsen, K, Kristensen, K, Molholm-Hansen, J. Rapid evaluation of creatinine clearance. Acta Med Scand 1974; 196: 517–20.CrossRefGoogle ScholarPubMed
69Rowe, JW, Shock, N, De Fronzo, RA. The influence of age on the renal response to water deprivation in man. Nephron 1976; 17: 270–8.CrossRefGoogle ScholarPubMed
70Cockcroft, DW, Gault, MN. Prediction of creatinine clearance from serum creatinine. Nephron 1976; 16: 3141.CrossRefGoogle ScholarPubMed
71Lindeman, RD. Overview: renal physiology and pathophysiology of ageing. Am J Kidney Dis 1990; 16: 275–82.CrossRefGoogle Scholar
72Nicoll, SR, Sainsbury, R, Bailey, RR et al. Assessment of creatinine clearance in healthy subjects over 65 years of age. Nephron 1991; 59: 621–5.CrossRefGoogle ScholarPubMed
73Keller, F. Kidney function and age (letter). NDT 1987; 2: 382.Google Scholar
74Nankivell, BJ, Gruenwald, SM, Allen, RD, Chapman, JR. Predicting glomerular filtration rate after kidney transplantation. Transplantation 1995; 59: 1683–9.CrossRefGoogle ScholarPubMed
75Baracskay, K, Jarjoura, D, Cugino, A et al. Geriatric renal function: estimating glomerular filtration in an ambulatory elderly population. Clin Nephrol 1997; 47: 222–8.Google Scholar
76Levey, AS, Bosch, JP, Lewis, JB et al. A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Ann Intern Med 1999; 130: 461–70.CrossRefGoogle ScholarPubMed
77Rule, AD, Jacobsen, SJ, Schwartz, GL et al. A comparison of serum creatinine-based methods for identifying chronic kidney diseases in hypertensive individuals and their siblings. Am J Hypertension 2006; 19: 608–61.CrossRefGoogle ScholarPubMed
78Musso, C, Macías Núñez, JF, Oreopoulos, DG. The aged kidney and the chronically aged one. Ann Intern Med 4 Oct 2006 (electronic letter).Google Scholar
79Musso, CG, Macías Nuñez, JF, Oreopoulos, DG. Physiological similarities and differences between renal aging and chronic renal disease. J Nephrol 2007; 20: 586–7.Google ScholarPubMed
80Rule, AD, Larson, TS, Bergstralh, EJ et al. Using serum creatinine to estimate glomerular filtration rate: accuracy in good health and in chronic kidney disease. Ann Intern Med 2004; 141: 929–37.CrossRefGoogle ScholarPubMed
81Durakovic, Z. Creatinine clearance in the elderly: a comparison of direct measurement and calculation from serum creatinine. Nephron 1986; 44: 66–9.CrossRefGoogle ScholarPubMed
82Macías-Núñez, JF, García, Iglesias C, Bondía, Román A et al. Renal handling of sodium in old people: a functional study. Age Ageing 1978; 7: 178–81.CrossRefGoogle ScholarPubMed
83De Santo, N, Anastasio, P, Coppola, S et al. Age-related changes in renal reserve and renal tubular function in healthy humans. Child Nephrol Urol 1991; 11: 3340.Google ScholarPubMed
84Miller, JH, McDonald, RK, Shock, NW. Age changes in the maximal rate of renal tubular reabsorption of glucose. J Gerontology 1952; 7: 196200.CrossRefGoogle ScholarPubMed
85Duckworth, WC, Bennett, RG, Hamel, FG. Insulin degradation: progress and potential. Endocrine Rev 1998; 19: 608624.Google ScholarPubMed
86Ble, A, Fink, JC, Woodman, RC et al. Renal function, erythropoietin, and anemia of older persons: the InCHIANTI study. Arch Int Med 2005; 165: 2222–7.CrossRefGoogle ScholarPubMed
87Eisenstaedt, R, Penninx, BW, Woodman, RC. Anemia in the elderly: current understanding and emerging concepts. Blood Rev 2006; 20: 213–26.CrossRefGoogle ScholarPubMed
88Ershler, WB, Sheng, S, McKelvey, J et al. Serum erythropoietin and aging: a longitudinal analysis. J Am Geriatr Soc 2005; 53: 1360–5.CrossRefGoogle ScholarPubMed
89Musso, CG, Musso, CA, Joseph, H et al. Plasma erythropoietin levels in the oldest old. Int Urol Nephrol 2004; 36: 259–62.CrossRefGoogle ScholarPubMed
90Musso, CG, Macias-Nuñez, JF, Musso, CAF et al. Fractional excretion of sodium in old-old people on low sodium diet. FASEB J 2000; 14: A659.Google Scholar
91Musso, C, López-Novoa, JM, Macías Núñez, JF. Handling of water and sodium by the senescent kidney. Interpretation of a clearance technique for functional study. Rev Esp Geriatr 2005; 40: 114–9.CrossRefGoogle Scholar
92Refoyo, A, Macías-Ñúñez, JF. The maintenance of sodium in healthy aged. Geriatr Nephrol Urol 1991; 1: 6568.CrossRefGoogle Scholar
93Macías-Núñez, JF, López-Novoa, JM, Martínez Maldonado, M. Acute renal failure in the aged. Semin Nephrol 1996; 16: 330–8.Google ScholarPubMed
94Burg, MB. The renal handling of sodium chloride. In: Brenner, BM, Rector, FC (eds), The Kidney. Saunders, Philadelphia. 1976; pp. 272–98.Google Scholar
95Macias Nuñez, JF, Bondía Roman, A, Rodriguez Commes, JL. Physiology and disorders of water balance and electrolytes in the elderly. In: Macias Núñez, JF, Cameron, JS (eds), Renal Function and Disease in the Elderly. Butterworths, London, UK. 1987; pp. 6793.CrossRefGoogle Scholar
96Rodriguez-Puyol, D. The aging kidney. Kidney Int 1998; 54: 2247–65.CrossRefGoogle ScholarPubMed
97Shannon, RP, Minaker, KL, Rowe, JW. Aging and water balance in humans. Semin Nephrol 1984; 4: 346–53.Google Scholar
98Goldman, R. Modern ideas about renal function in the elderly. In: Reinders Folmer, ANJ, Shouten, J (eds), Geriatrics for the Practitioner. Excerpta Medica, Amsterdam. 1981; pp. 157–66.Google Scholar
99Phillips, PA, Rolls, BJ, Ledingham, JG et al. Reduced thirst after water deprivation in healthy elderly men. NEJM 1984; 311: 753–9.CrossRefGoogle ScholarPubMed
100Rowe, JW, Minaker, KL, Sparrow, D, Robertson, GL. Age-related failure of volume-pressuremediated vasopressin release. J Clin Endocrin Metab 1982; 54: 661–4.CrossRefGoogle ScholarPubMed
101Seymour, DG, Henschke, PJ, Cape, RDT, Campbell, AJ. Acute confusional states and dementia in the elderly: the role of dehydration/volume depletion, physical illness and age. Age Ageing 1980; 9: 137–46.CrossRefGoogle ScholarPubMed
102Helderman, JH, Vestal, RE, Rowe, JW et al. The response of arginine vasopressin to intravenous ethanol and hypertonic saline in man: the impact of aging. J Gerontol 1978; 33: 3947.CrossRefGoogle ScholarPubMed
103Robertson, GL. Abnormalities of thirst regulation. Kidney Int 1984; 25: 460–9.CrossRefGoogle ScholarPubMed
104Edelman, IS, Leibman, J. Anatomy of body water and electrolytes. Am J Med 1959; 27: 256–60.CrossRefGoogle Scholar
105Edmonds, CJ, Jasani, BM, Smith, T. Total body potassium and body fat estimation in relationship to height, sex, age, malnutrition and obesity. Clin Sci Mol Med 1975; 48: 431–40.Google ScholarPubMed
106Chien, S, Usami, S, Simmons, RL. Blood volume and age: repeated measurements on normal men. J Appl Physiol 1966; 21: 583–8.CrossRefGoogle ScholarPubMed
107Wörum, I, Fulöp, T, Csongör, J, Foris, G, Leóvey, A. Interrelation between body composition and endocrine system in healthy elderly people. Mech Aging Dev 1984; 28: 315–24.CrossRefGoogle ScholarPubMed
108Musso, CG, Maytin, S, Fainstein, I et al. . Water metabolism in elderly with immobility syndrome. XV International Congress of Nephrology, Buenos Aires (abstracts). 1999; p.169.Google Scholar
109Musso, CG, Macias-Nuñez, JF, Fainstein, I et al. Water metabolism in demented elderly. FASEB J 2000; 14: A658.Google Scholar
110Musso, CG, Macías-Núñez, JF. Renal handling of electrolytes in the old and old-old healthy aged. In: Macias Núñez, JF, Cameron, JS, Oreopoulos, DG (eds), The Aging Kidney in Health and Disease. Springer, New York 2008; pp. 141–54.CrossRefGoogle Scholar
111You, G, Smith, CP, Kanai, Y et al. Cloning and expression of the vasopressin-regulated urea transporters. Nature 1993; 365: 844–7.CrossRefGoogle Scholar
112Dontas, AS, Marketos, S, Papanayioutou, P. Mechanisms of renal tubular defects in old age. Postgrad Med J 1972; 48: 295303.CrossRefGoogle ScholarPubMed
113Lewis, WH, Alving, AS. Changes with age in the renal function of adult men. Clearance of urea, amount of urea nitrogen in the blood, concentrating ability of kidneys. Am J Physiol 1938; 123: 505–15.CrossRefGoogle Scholar
114Kirkland, JL, Lye, M, Levy, DW, Banerjee, AK. Patterns of urine flow and electrolyte secretion in healthy elderly people. Br Med J 1985; 285: 1665–7.Google Scholar
115Crowe, MJ, Forsling, ML, Philips, PA, Ledinghan, JG, Smith, RF. Altered water excretion in healthy elderly men. Age Ageing 1987; 16: 285–93.CrossRefGoogle ScholarPubMed
116Lindeman, RD, Van Buren, HC, Raisz, LG. Osmolar renal concentrating ability in healthy young men and hospitalized patients without renal disease. NEJM 1960; 262: 396409.CrossRefGoogle ScholarPubMed
117Lye, M. Distribution of body potassium in healthy elderly subjects. Gerontology 1981; 27: 286.CrossRefGoogle ScholarPubMed
118Burini, R, Da Silva, CA, Ribeiro, MAC, Campana AD. Concentracão de sodio e de potassio no soro e plasma de individuos normais. Influencia da idade, do sexo e do sistema de colheita do sangue sobre os resultados. Revista de Hospitale Clinico da Facultad do Medicina de São Paulo 1973; 28: 914.Google Scholar
119Biswas, K, Mulkerrin, EC. Potassium homoeostasis in the elderly. QJM 1997; 90: 487492.CrossRefGoogle ScholarPubMed
120Kelepouris, E, Agus, Z. Hypomagnesemia: renal magnesium handling. Semin Nephrol 1998; 18: 5873.Google ScholarPubMed
121Graham, LA, Caesar, JJ, Burgen, ASV. Gastrointestinal absorption and excretion of magnesium in man. Metabolism 1960; 9: 646–59.Google ScholarPubMed
122Rude, R. Magnesium disorders. In: Kokko, J, Tannen, R (eds), Fluids and Electrolytes. WB Saunders Company, Philadelphia. 1996; pp. 421–45.Google Scholar
123Wen, SF, Evanson, RL, Dirks, JH. Micropuncture study of renal magnesium transport in proximal and distal tubule of dog. Am J Physiol 1970; 219: 570–6.CrossRefGoogle ScholarPubMed
124Shareghi, GR, Agus, ZS. Magnesium transport in the cortical thick ascending limb of Henle's loop of the rabbit. J Clin Invest 1982; 69: 759–69.CrossRefGoogle ScholarPubMed
125Hershfield, M. Gout and uric acid metabolism. In: Bennett, JC, Plum, F (eds), Cecil Textbook of Medicine. WB Saunders Company, Philadelphia. 1996. pp. 1508–15.Google Scholar
126Sorensen, LB. Gout secondary to chronic renal disease: studies on urate metabolism. Ann Rheum Dis 1980; 39: 424–30.CrossRefGoogle ScholarPubMed
127Musso, CG, Gregori, JAA, Macías-Núñez, JF. Renal handling of uric acid, magnesium, phosphorus, calcium and acid base in the elderly. In: Macias Núñez, JF, Cameron, JS, Oreopoulos, DG (eds), The Aging Kidney in Health and Disease. Springer, New York, USA. 2008; pp. 155–71.CrossRefGoogle Scholar
128Forster, IC, Hernando, N, Biber, J, Murer, H. Proximal tubular handling of phosphate: a molecular perspective. Kidney Int 2006; 70: 1548–59.CrossRefGoogle ScholarPubMed
129Goldfarb, S, Westby, GR, Goldberg, M et al. Renal tubular effects of chronic phosphate deplection. J Clin Invest 1977; 59: 770–9.CrossRefGoogle Scholar
130Friedman, PA, Gesek, FA. Cellular calcium transport in renal epithelia: measurements, mechanism and regulation. Physiol Rev 1995; 75: 429–71.CrossRefGoogle ScholarPubMed
131Suki, WN, Rose, D. Renal transport of calcium, magnesium and phosphate. In: Brenner, BM (ed), The Kidney. Saunders, Philadelphia. 1996; vol. I: 472515.Google Scholar
132Bindels, RJM. Calcium handling by the mammalian kidney. J Exp Biol 1993; 184: 89104.CrossRefGoogle ScholarPubMed
133Galinsky, D, Meller, Y, Shany, S. The aging kidney and the calcium regulating hormones vitamin D metabolites, parthyroid hormone and calcitonin. In: Macias Núñez, JF, Cameron, JS (eds), Renal Function and Disease in the Elderly. Butterworths, London, UK. 1987; pp. 121–42.CrossRefGoogle Scholar
134Adachi, T, Kawamura, M, Owada, M, Hiramori, K. Effect of age on renal functional and orthostatic vascular response in healthy men. Clin Exp Pharmacol Physiol 2001; 28: 877–80.CrossRefGoogle ScholarPubMed
135Shock, NW, Yiengst, MJ. Experimental displacement of the acid-base equilibrium of the blood in aged males. Fed Proceed 1948; 7: 114–9.Google ScholarPubMed
136Adler, S, Lindeman, RD, Yiengst, MJ et al. Effect of acute acid loading on urinary acid excretion by the aging human kidney. J Lab Clin Med 1968; 72: 278–89.Google ScholarPubMed
137Frassetto, LA, Morris, RC Jr, Sebastian, A. Effect of age on blood acid-base composition in adult humans: role of age-related renal functional decline. Am J Physiol 1996; 271: 1114–22.Google ScholarPubMed
138Agarwal, BN, Cabebe, FG. Renal acidification in elderly subjects. Nephron 1980; 26: 291–5.CrossRefGoogle ScholarPubMed
139Macías-Núñez, JF, Garcia Iglesias, C, Tabernero, JM et al. Comportamiento del riñon del viejo en la sobrecarga de acidos. Nefrología 1983; 3: 11–6.Google Scholar
140Schück, O, Nádvorníkova, H. Short acidification test and its interpretation with respect to age. Nephron 1987; 46: 215–6.CrossRefGoogle ScholarPubMed
141Musso, CG. Geriatric nephrology and the ‘nephrogeriatric giants’. Int Urol Nephrol 2002; 34: 255256.CrossRefGoogle ScholarPubMed
142Musso, CG, Macias Nuñez, JF. Feedback between geriatric syndromes: general system theory in geriatrics. Int Urol Nephrol 2006; 38: 785786.CrossRefGoogle ScholarPubMed