Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-01T01:32:43.145Z Has data issue: false hasContentIssue false

Proteins and aging

Published online by Cambridge University Press:  17 November 2008

Alan R Hipkiss*
Affiliation:
King's College London, London, UK
*
Molecular Biology and Biophysics Group, King's College London, Strand, London WC2R 2LS, UK.

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Biological gerontology
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Adelman, RC, Dekker, EE. eds. Modification of proteins during aging. New York: Alan R Liss, 1985.Google Scholar
2Rosenberger, RF. Senescence and the accumulation of abnormal proteins. Mutat Res 1991; 256: 255–62.CrossRefGoogle ScholarPubMed
3Yuan, PM, Talent, JM, Gracyl, RW. Molecular basis for the accumulation of acidic isozymes of triose phosphate isomerale on aging. Mech Age Dev 1981; 17: 151–62.CrossRefGoogle ScholarPubMed
4Holliday, R, Tarrant, GM. Altered enzymes in ageing human fibroblasts. 1972; 238: 2630.CrossRefGoogle Scholar
5Gershon, H, Gershon, D. Inactive enzyme molecules in aging mice. Proc Natl Acad Sci USA 1973; 70: 909–13.CrossRefGoogle ScholarPubMed
6Hipkiss, AR. In: Warnes, AM ed. Human ageing and later life. London: Edward Arnold, 1989: 1528.Google Scholar
7Games, D, Adams, D, Alessandrini, R et al. Alzheimer-type neuropathology in transgenic mice overexpressing V717F beta-amyloid precursor protein. Nature (Lond) 1995; 373: 523527.CrossRefGoogle ScholarPubMed
8Bada, JL, Protsch, R. J Am Chem Soc 1973; 111: 1136–38.Google Scholar
9Luthra, M, Ranganathan, D, Ranganathan, S, Balasubramanian, D. Racemization of tyrosine in the insoluble protein fraction of brunescent aging human lenses. J Biol Chem 1994; 269: 22678–82.CrossRefGoogle ScholarPubMed
10Groenen, PJTA, van den Ijssel, PRLA, Voorter, CEM, Bloemendal, H, de Jong, WW. Site-specific racemization in aging alpha A-crystallin. FEBS Lett 269: 109–12.CrossRefGoogle Scholar
11Fujii, N, Satoh, K, Harada, K, Ishibashi, Y. Simultaneous Stereoinversion and isomerization at specific aspartic acid residues in alpha A-crystallin from human lens. J Biochem (Tokyo) 1994; 116: 663–69.CrossRefGoogle ScholarPubMed
12Shapira, R, Wilkinson, KD, Shapira, G. Racemization of individual aspartate residues in human myelin basic protein. J Neurochem 1988; 50: 649–54.CrossRefGoogle ScholarPubMed
13Roher, AE, Lowenson, JD, Clarke, S et al. Structural alterations in the peptide backbone of beta-amyloid core protein may account for its deposition and stability in Alzheimer's disease. J Biol Chem 1993; 268: 3072–83.CrossRefGoogle ScholarPubMed
14Geiger, T, Clarke, S. Deamidation, isomerization, and racemization at asparaginyl and aspartyl residues in peptides. Succinimide-linked reactions that contribute to protein degradation. J Biol Chem 1987; 262: 785–94.CrossRefGoogle ScholarPubMed
15Wautier, J-L, Wautier, M-P, Schmidt, A-M et al. Advanced glycation end products (AGEs) on the surface of diabetic erythrocytes bind to the vessel wall via a specific receptor inducing oxidant stress in the vasculature: a link between surface-associated AGEs and diabetic complications. Proc Natl Acad Sci USA 1994; 91: 7742–46.CrossRefGoogle Scholar
16Yan, S-D, Chen, X, Schmidt, AM et al. Glycated tau protein in Alzheimer disease: a mechanism for induction of oxidant stress. Proc Natl Acad Sci USA 1994; 91: 7787–91.CrossRefGoogle ScholarPubMed
17Dean, RT, Wolff, SP, McElligott, MA. Histidine and proline are important sites of free radical damage to proteins. Free Radic Res Commun 1989; 7: 97193.CrossRefGoogle ScholarPubMed
18Starke-Reed, PE, Oliver, C. Protein oxidation and proteolysis during aging and oxidative stress. Arch Biochem Biophys 1989; 275: 559–67.CrossRefGoogle ScholarPubMed
19Stadtman, ER. Protein oxidation and aging. Science 1992; 257: 1220–24.CrossRefGoogle ScholarPubMed
20Hunt, JV, Dean, RT, Wolff, SP. Hydroxyl radical production and autoxidative glycosylation. Glucose autoxidation as the cause of protein damage in the experimental glycation model of diabetes mellitus and ageing. Biochem J 1988; 256: 205–12.CrossRefGoogle ScholarPubMed
21Chace, KV, Carubelli, R, Nordquist, RE. The role of nonenzymatic glycosylation, transition metals, and free radicals in the formation of collagen aggregates. Arch Biochem Biophys 1991; 288: 473–80.CrossRefGoogle ScholarPubMed
22Ross, R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature (Lond) 1993; 362: 801809.CrossRefGoogle ScholarPubMed
23McKay, MJ, Daniels, RS, Hipkiss, AR. Biochem J 1980; 188: 279–83.CrossRefGoogle Scholar
24Okada, AA, Dice, JF. Altered degradation of intracellular proteins in aging human fibroblasts. Mech Age Dev 1984; 26: 341–56.CrossRefGoogle ScholarPubMed
25Wharton, SA, Hipkiss, AR. Degradation of peptides and proteins of different sizes by homogenates of human MRC5 lung fibroblasts. Aged cells have a decreased ability to degrade shortened proteins. FEBS Lett 1985; 184: 249–53.Google Scholar
26Dice, JF. Altered intracellular protein degradation in aging: a possible cause of proliferative arrest. Exp Gerontol 1989; 24: 451–59.CrossRefGoogle ScholarPubMed
27Carmichael, PL, Hipkiss, AR. Age-related changes in proteolysis of aberrant crystallin in bovine lens cell-free preparations. Mech Age Dev 1989; 50: 3748.CrossRefGoogle ScholarPubMed
28Taylor, A, Berger, JJ, Reddan, J, Zuliani, A. Effects of aging in vitro on intracellular proteolysis in cultured rabbit lens epithelial cells in the presence and absence of serum. In Vitro Cell Dev Biol 1991; 27A: 287–92.CrossRefGoogle ScholarPubMed
29Grant, AJ, Jessup, W, Dean, RT. Accelerated endocytosis and incomplete catabolism of radical damaged protein. Biochim Biophys Acta 1992; 1131: 203209.CrossRefGoogle Scholar
30Ou, P, Wolff, SP. Erythrocyte catalase inactivation (H2O2 production) by ascorbic acid and glucose in the presence of aminotriazole: role of transition metals and relevance to diabetes. Biochem J 1994; 303: 935–40.CrossRefGoogle ScholarPubMed
31Pierpaoli, W, Regelson, W. Pineal control of aging: effect of melatonin and pineal grafting on aging mice. Proc Natl Acad Sci USA 1994; 91: 787–91.CrossRefGoogle ScholarPubMed
32Baynes, JW, Monnier, VM eds. The Maillard reaction in aging, diabetes and nutrition. New York: Alan R Liss, Inc., 1989.Google Scholar
33Makita, Z, Vlassara, H, Rayfield, E et al. Hemoglobin-AGE: a circulating marker of advanced glycosylation. Science 1992; 258: 651–53.CrossRefGoogle ScholarPubMed
34Kohen, R, Yamamoto, Y, Cundy, KC, Ames, B. Antioxidant activity of carnosine, homocarnosine, and anserine present in muscle and brain. Proc Natl Acad Sci USA 1988; 85: 3175–79.CrossRefGoogle ScholarPubMed
35Gaggelli, E, Vallensin, G. J Chem Soc Perkin Trans 1990; 2: 401406.CrossRefGoogle Scholar
36Hipkiss, AR, Michaelis, J, Syrns, P, Kumar, S, Lam, Y. Carnosine protects proteins against in vitro glycation and cross-linking. Biochem Soc Trans 1994; 22: 399SCrossRefGoogle ScholarPubMed
37Kuykendall, JR, Bogdanffy, MS. Reaction kinetics of DNA-histone crosslinking by vinyl acetate and acetaldehyde. Carcinogenesis 1992; 13: 2095–100.CrossRefGoogle ScholarPubMed
38McFarland, GA, Holliday, R. Retardation of the senescence of cultured human diploid fibroblasts by carnosine. Exp Cell Res 1994; 212: 167–75.CrossRefGoogle ScholarPubMed
39Gille, JJP, Pasman, P, van Berkel, CGM, Joenje, H. Effect of antioxidants on hyperoxia-induced chromosomal breakage in Chinese hamster ovary cells: protection by carnosine. Mutagenesis 1991; 6: 313–18.CrossRefGoogle ScholarPubMed
40Boldyrev, AA, Dupin, AM, Bunin, AY, Babizhaev, MA, Severin, SE. The antioxidative properties of carnosine, a natural histidine containing dipeptide. Biochem Intern 1987; 15: 1105–13.Google ScholarPubMed
41Hipkiss, AR, Holliday, R, McFarland, G, Michaelis, J. Carnosine and senescence. Lifespan 1993; 4: 13.Google Scholar