Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2025-01-01T05:07:38.687Z Has data issue: false hasContentIssue false

Subcortical vascular cognitive impairment – the pathology and pathophysiology

Published online by Cambridge University Press:  01 February 2007

J Birns*
Affiliation:
King's College London School of Medicine, LondonUK
L Kalra
Affiliation:
King's College London School of Medicine, LondonUK
*
Address for correspondence: J Birns, Deptartment of Stroke Medicine, King's College London School of Medicine, Denmark Hill Campus, Bessemer Road, London SE5 9PJ, UK.

Extract

Vascular cognitive impairment (V.C.I.) encompasses all forms of cognitive loss associated with cerebrovascular disease and ischaemic brain injury. It includes cognitive impairment related to stroke, cortical and subcortical infarcts, silent infarcts and strategic infarcts, white matter lesions associated with small vessel disease, and specific arteriopathies such as CADASIL (Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leucoencephalopathy). Recent studies have demonstrated that VCI is most commonly of a subcortical aetiology with small vessel disease being the major cause. VCI plays an important part in patients with other forms of dementia, such as Alzheimer's disease, who have coexisting vascular lesions and it has been proposed that VCI may be the most common form of cognitive impairment in older people, with a prevalence of 5% in people over the age of 65. In view of the aging population and the growing magnitude of vascular disease in western society, the prevalence of subcortical VCI is likely to increase, with a greater impact on patients and health care providers. In this article, we will review the cerebrovascular pathology underlying subcortical VCI and its role in mediating the characteristic cognitive deficits.

Type
Clinical geriatrics
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Wilson, DM, Craig, D, McIlroy, SP, Passmore, AP. Vascular cognitive impairment. Rev Clin Gerontol 2004; 14: 4553.CrossRefGoogle Scholar
2O'Brien, JT, Erkinjuntii, E, Reisberg, B et al. Vascular cognitive impairment. Lancet Neurol 2003; 2: 8993.CrossRefGoogle ScholarPubMed
3Roman, GC, Erkinjuntti, T, Wallin, A, Pantoni, L, Chui, HC. Subcortical ischaemic vascular dementia. Lancet Neurol 2002; 1: 426–36.CrossRefGoogle ScholarPubMed
4Rockwood, K, Wentzel, C, Hachinski, V, Hogan, DB, MacKnight, C, McDowell, I. Prevalence and outcomes of vascular cognitive impairment. Vascular Cognitive Impairment Investigators of the Canadian Study of Health and Aging. Neurol 2000; 54: 447–51.CrossRefGoogle ScholarPubMed
5Moody, DM, Bell, MA, Challa, VR. Features of the cerebral vascular pattern that predict vulnerability to perfusion or oxygenation deficiency: an anatomic study. AJNR Am J Neuroradiol 1990; 11: 431–39.Google ScholarPubMed
6Pantoni, L, Garcia, J. Pathogenesis of leukoaraiosis. Stroke 1997; 28: 652–59.CrossRefGoogle ScholarPubMed
7Rowbotham, GF, Little, E. Circulation of the cerebral hemispheres. Br J Surg 1965; 52: 821.CrossRefGoogle ScholarPubMed
8Van Den Bergh, R. Centrifugal elements in the vascular pattern of the deep intracerebral blood supply. Angiology 1969; 20: 8894.CrossRefGoogle ScholarPubMed
9de Reuck, J. The human periventricular arterial blood supply and the anatomy of cerebral infarctions. Eur Neurol 1971; 5: 321–34.CrossRefGoogle ScholarPubMed
10Challa, VR, Bell, MA, Moody, DM. A combined hematoxylin-eosin, alkaline phosphatase and high-resolution microradiographic study of lacunes. Clin Neuropathol 1990; 9: 196204.Google ScholarPubMed
11Ostrow, PT, Miller, LL. Pathology of small artery disease. Adv Neurol 1993; 62: 93125.Google ScholarPubMed
12Brown, WR, Moody, DM, Challa, VR, Thore, CR, Anstrom, JA. Venous collagenosis and arteriolar tortuosity in leukoaraiosis. J Neurol Sci 2002; 203–4: 159–63.CrossRefGoogle Scholar
13Englund, E. Neuropathology of white matter lesions in vascular cognitive impairment. Cerebrovasc Dis 2002; 13 (suppl 2): 1115.CrossRefGoogle ScholarPubMed
14Besson, G, Hommel, . Historical aspects of lacunes and the ‘lacunar controversy’. Adv Neurol 1993; 62: 110.Google ScholarPubMed
15Fisher, CM. Lacunes: small, deep cerebral infarcts. Neurology 1965; 15: 774–84.CrossRefGoogle ScholarPubMed
16Fisher, CM. The arterial lesions underlying lacunes. Acta Neuropathol (Berl) 1968; 12: 115.CrossRefGoogle ScholarPubMed
17Boiten, J, Lodder, J, Kessels, F. Two clinically distinct lacunar infarct entities? A hypothesis. Stroke 1993; 24: 652–56.CrossRefGoogle ScholarPubMed
18Murdoch, G. Staining for apoptosis: now neuropathologists can ‘see’ leukoaraiosis. AJNR Am J Neuroradiol 2000; 21: 4243.Google ScholarPubMed
19Janota, I, Mirsen, TR, Hachinski, VC, Lee, DH, Merskey, H. Neuropathologic correlates of leuko-araiosis. Arch Neurol 1989; 46: 1125–58.CrossRefGoogle ScholarPubMed
20O'Sullivan, M, Lythgoe, DJ, Pereira, AC et al. Patterns of cerebral blood flow reduction in patients with ischaemic leukoaraiosis. Neurology. 2002; 59: 321–26.CrossRefGoogle Scholar
21Hassan, A, Markus, HS. Genetics and ischaemic stroke. Brain 2000; 123: 1784–812.CrossRefGoogle ScholarPubMed
22Joutel, A, Andreux, F, Gaulis, S, Domenga, V, Cecillon, M, Battail, N. The ectodomain of Notch3 receptor accumulates within the cerebrovasculature of CADASIL patients. J Clin Invest 2000; 105: 597605.CrossRefGoogle ScholarPubMed
23Hassan, A, Hunt, BJ, O'Sullivan, M et al. Markers of endothelial dysfunction in lacunar infarction and ischaemic leukoaraiosis. Brain 2003; 126: 424–32.CrossRefGoogle ScholarPubMed
24Isaka, Y, Okamoto, M, Ashia, K, Imaizumi, M. Decreased cerebrovascular dilatory capacity in subjects with asymptomatic periventricular hyperintensities. Stroke. 1994; 25: 375–81CrossRefGoogle ScholarPubMed
25Kuwabara, Y, Ichiya, Y, Sasaki, M et al. Cerebral blood flow and vascular response to hypercapnia in hypertensive patients with leukoaraiosis. Ann Nucl Med 1996; 10: 293–98.CrossRefGoogle ScholarPubMed
26Bakker, SL, de Leeuw, FE, de Groot, JC, Hofman, A, Koudstaal, PJ, Breteler, MM. Cerebral vasomotor reactivity and cerebral white matter lesions in the elderly. Neurology 1999; 52: 578–83.CrossRefGoogle ScholarPubMed
27Markus, H, Cullinane, M. Severely impaired cerebrovascular reactivity predicts stroke and TIA risk in patients with carotid artery stenosis and occlusion. Brain 2001; 124: 457–67.CrossRefGoogle ScholarPubMed
28Dawson, SL, Blake, MJ, Panerai, RB, Potter, J. Dynamic but not static cerebral autoregulation is impaired in acute ischaemic stroke. Cerebrovasc Dis 2000; 10: 126–32.CrossRefGoogle Scholar
29Molina, C, Sabin, JA, Montaner, J, Rovira, A, Abilleira, S, Codina, A. Impaired cerebrovascular reactivity as a risk marker for first-ever lacunar infarction: A case-control study. Stroke 1999; 30: 2296–301.CrossRefGoogle ScholarPubMed
30Cupini, LM, Diomedi, M, Placidi, F, Silvestrini, M, Giacomini, P. Cerebrovascular reactivity and subcortical infarctions. Arch Neurol 2001; 58: 577–81.CrossRefGoogle ScholarPubMed
31Fu, JH, Lu, CZ, Hong, Z, Dong, Q, Ding, D, Wong, KS. Relationship between cerebral vasomotor reactivity and white matter lesions in elderly subjects without large artery occlusive disease. J Neuroimaging 2006; 16: 120–05.CrossRefGoogle ScholarPubMed
32Inzitari, D, Ginanneschi, A, Ancona, AL, Piccinni, M, Marinoni, M. Evaluation of cerebral autoregulation in patients with leucoaraiosis. Ital J Neurol Sci 1991; (suppl 5): 22.Google Scholar
33Marinoni, M, Ginanneschi, A, Ancona, AL, Modesti, PA, Piccininni, , Inzitari, D. Orthostatic transcranial Doppler variations in patients with leukoaraisois. Neurology 1991: 41 (suppl 1): 123.Google Scholar
34Matsushita, K, Kuriyama, Y, Nagatsuka, K, Nakamura, M, Sawada, T, Omae, T. Periventricular white matter lucency and cerebral blood flow autoregulation in hypertensive patients. Hypertension 1994; 23: 565–68.CrossRefGoogle ScholarPubMed
35White, RP, Markus, HS. Impaired dynamic cerebral autoregulation in carotid artery stenosis. Stroke 1997; 28: 1340–44.CrossRefGoogle ScholarPubMed
36Elias, M, Sullivan, L, D'Agostino, R et al. Framingham stroke risk profile and lowered cognitive performance. Stroke 2004; 35: 404–09.CrossRefGoogle ScholarPubMed
37Pedelty, L, Nyenhuis, DL. Vascular cognitive impairment. Curr Treat Options Cardiovasc Med 2006; 8: 243–50.CrossRefGoogle ScholarPubMed
38Hachinski, V. The 2005 Thomas Willis Lecture: stroke and vascular cognitive impairment: a transdisciplinary, translational and transactional approach. Stroke 2007; 38: 1396–404.CrossRefGoogle Scholar
39Birns, J, Kalra, L. Blood pressure and vascular cognitive impairment: the debate continues. J HumHypertens 2006; 20: 13.CrossRefGoogle ScholarPubMed
40Tatemichi, TK, Desmond, DW, Prohovnik, I. Strategic infarcts in vascular dementia. A clinical and brain imaging experience. Arzneimittelforschung 1995; 45 (3A): 371–85.Google ScholarPubMed
41Cummings, JL. Frontal-subcortical circuits and human behavior. J Psychosom Res 1998; 44: 627–28.Google ScholarPubMed
42O'Brien, JT, Wiseman, R, Burton, EJ et al. Cognitive associations of subcortical white matter lesions in older people. Ann N Y Acad Sci 2002; 977: 436–44CrossRefGoogle ScholarPubMed