Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-11T04:58:10.836Z Has data issue: false hasContentIssue false

Identification of candidate mitochondrial RNA editing ligases from Trypanosoma brucei

Published online by Cambridge University Press:  07 February 2001

MICHAEL T. McMANUS
Affiliation:
Department of Biochemistry and Molecular Genetics, Schools of Medicine and Dentistry, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
MASAKO SHIMAMURA
Affiliation:
Department of Pediatrics, Schools of Medicine and Dentistry, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
JAYLEEN GRAMS
Affiliation:
Department of Biochemistry and Molecular Genetics, Schools of Medicine and Dentistry, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
STEPHEN L. HAJDUK
Affiliation:
Department of Biochemistry and Molecular Genetics, Schools of Medicine and Dentistry, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
Get access

Abstract

Most mitochondrial genes of Trypanosoma brucei do not contain the necessary information to make translatable mRNAs. These transcripts must undergo RNA editing, a posttranscriptional process by which uridine residues are added and deleted from mitochondrial mRNAs. RNA editing is believed to be catalyzed by a ribonucleoprotein complex containing endonucleolytic, terminal uridylyl transferase (TUTase), 3′ uridine-specific exonucleolytic (U-exo), and ligase activities. None of the catalytic enzymes for RNA editing have been identified. Here we describe the identification of two candidate RNA ligases (48 and 52 kDa) that are core catalytic components of the T. brucei ribonucleoprotein editing complex. Both enzymes share homology to the covalent nucleotidyl transferase superfamily and contain five key signature motifs, including the active site KXXG. In this report, we present data on the proposed 48 kDa RNA editing ligase. We have prepared polyclonal antibodies against recombinant 48 kDa ligase that specifically recognize the trypanosome enzyme. When expressed in trypanosomes as an epitope-tagged fusion protein, the recombinant ligase localizes to the mitochondrion, associates with RNA editing complexes, and adenylates with ATP. These findings provide strong support for the enzymatic cascade model for kinetoplastid RNA editing.

Type
REPORT
Copyright
2001 RNA Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)