Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T11:12:50.814Z Has data issue: false hasContentIssue false

A 2(3-RRPS) parallel manipulator inspired by Gough–Stewart platform

Published online by Cambridge University Press:  26 July 2012

Jaime Gallardo-Alvarado*
Affiliation:
Department of Mechanical Engineering, Instituto Tecnológico de Celaya, Av. Tecnológico y A. García Cubas, 38010 Celaya, GTO, México
Mario A. García-Murillo
Affiliation:
Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Instituto Politécnico Nacional, Cerro Blanco 141, Colinas del Cimatario, Querétaro, QRO, México
Eduardo Castillo-Castaneda
Affiliation:
Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Instituto Politécnico Nacional, Cerro Blanco 141, Colinas del Cimatario, Querétaro, QRO, México
*
*Corresponding author. E-mail: gjaime@itc.mx; jaime.gallardo@itcelaya.edu.mx

Summary

This study addresses the kinematics of a six-degrees-of-freedom parallel manipulator whose moving platform is a regular triangular prism. The moving and fixed platforms are connected to each other by means of two identical parallel manipulators. Simple forward kinematics and reduced singular regions are the main benefits offered by the proposed parallel manipulator. The Input–Output equations of velocity and acceleration are systematically obtained by resorting to reciprocal-screw theory. A case study, which is verified with the aid of commercially available software, is included with the purpose to exemplify the application of the method of kinematic analysis.

Type
Articles
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Gough, V. E., “Contribution to Discussion to Papers on Research in Automobile Stability and Control and in Type Performance,” Proceedings of the Automation Division Institution of Mechanical Engineers, UK (1957) pp. 392395.Google Scholar
2.Gough, V. E. and Whitehall, S. G., “Universal Tyre Testing Machine,” Proceedings of the FISITA Ninth International Technical Congress, IMechE 1, London, UK (1962) pp. 117137.Google Scholar
3.Stewart, D., “A platform with six degrees of freedom,” Proc. Inst. Mech. Eng. I 180 (15), 371386 (1965).CrossRefGoogle Scholar
4.Raghavan, M., “The Stewart platform of general geometry has 40 configurations,” ASME J. Mech. Des. 115 (2), 277282 (1993).CrossRefGoogle Scholar
5.Innocenti, C., “Forward kinematics in polynomial form of the general Stewart platform,” ASME J. Mech. Des. 123 (2), 254260 (2001).CrossRefGoogle Scholar
6.Rolland, L., “Certified solving of the forward kinematics problem with an exact algebraic method for the general parallel manipulator,” Adv. Robot. 19 (9), 9951025 (2005).CrossRefGoogle Scholar
7.Innocenti, C. and Parenti-Castelli, V., “Analytical form solution of the direct kinematics of a 4-4 fully in-parallel actuated six-degrees-of-freedom mechanism,” Informatica 17 (1), 1320 (1993).Google Scholar
8.Wohlhart, K., “Displacement analysis of the general spherical Stewart platform,” Mech. Mach. Theory 29 (4), 581589 (1994).CrossRefGoogle Scholar
9.Innocenti, C., “Direct kinematics in analytical form of the 6-4 fully-parallel mechanism,” ASME J. Mech. Des. 117 (1), 8995 (1995).CrossRefGoogle Scholar
10.Ku, D.-M., “Forward kinematic analysis of a 6-3 type Stewart platform mechanism,” Proc. Instn. Mech. Eng. Part K: J. Multi-body Dyn. 214 (K4), 233241 (2000).Google Scholar
11.Gregorio, R. Di, “Analytic formulation of the 6-3 fully-parallel manipulator's singularity determination,” Robotica 19 (6), 663667 (2001).CrossRefGoogle Scholar
12.Gallardo-Alvarado, J., “Jerk distribution of a 6-3 Gough-Stewart platform,” Proc. Instn. Mech. Eng. Part K: J. Multi-body Dyn. 217 (1), 7784 (2003).Google Scholar
13.Chen, S.-L. and You, I.-T., “Kinematic and singularity analyses of a six-DOF 6-3-3 parallel link machine tool,” Int. J. Adv. Manufact. Tech. 16 (11), 835842 (2000).CrossRefGoogle Scholar
14.Chen, S.-L. and Liu, Y.-C., “Post-processor development for a six degrees-of-freedom parallel-link machine tool,” Int. J. Adv. Manufact. Tech. 18 (4), 254265 (2001).CrossRefGoogle Scholar
15.Zhang, M. and Zhuo, B., “Workspace Analysis and Parameter Optimization of a Six-DOF 6-3-3 Parallel Link Machine Tool,” In: Intelligent Robotics and Computation, Lecture Notes in Computer Science (Goebel, R., Siekmann, J. and Wahlster, W., eds.) (Springer, Dec. 16–18, 2009), vol. 5928/2009, pp. 706712.Google Scholar
16.Gao, H., Xiao, P. and Zhang, H., “Configuration Optimization of Physical Prototype for 6-3-3 Parallel Mechanism,” Proceedings of 2011 International Conference on Electrical and Control Engineering (ICECE) (Yichang, China, Sep. 16–18, 2011) pp. 29372939.CrossRefGoogle Scholar
17.Lu, Y. and Hu, B., “Solving driving forces of 2(3-SPR) serial-parallel manipulator by CAD variation geometry approach,” ASME J. Mech. Des. 128 (6), 13491351 (2006).CrossRefGoogle Scholar
18.Gallardo-Alvarado, J., Aguilar-Nájera, C. R., Casique-Rosas, L., Rico-Martínez, J. M. and Islam, Md. Nazrul, “Kinematics and dynamics of 2(3-RPS) manipulators by means of screw theory and the principle of virtual work,” Mech. Mach. Theory 43 (10), 12811294 (2008).CrossRefGoogle Scholar
19.Merlet, J.-P., “Manipulateurs paralleles, 4eme partie: mode d´assemblage et cinematique directe sous forme polynomiale,” INRIA Research Report no. 1135 (1989) Centre de Sophia Antipolis, Valbonne.Google Scholar
20.Innocenti, C. and Parenti-Castelli, V., “Direct position analysis of the Stewart platform mechanism,” Mech. Mach. Theory 25 (6), 611621 (1990).CrossRefGoogle Scholar
21.Tsai, L.-W., Robot Analysis (John Wiley & Sons, New York, 1999).Google Scholar
22.Gallardo-Alvarado, J., Rodríguez-Castro, R. and Islam, Md Nazrul, “Analytical solution of the forward position analysis of parallel manipulators that generate 3-RS structures,” Adv. Robot. 22 (2–3), 215234 (2008).CrossRefGoogle Scholar
23.Gallardo-Alvarado, J., Aguilar-Nájera, C. R., Casique-Rosas, L., Pérez-González, L. and Rico-Martínez, J. M., “Solving the kinematics and dynamics of amodular spatial hyper-redundant manipulator by means of screw theory,” Multibody Syst. Dyn. 20 (4), 307325 (2008).CrossRefGoogle Scholar
24.Gosselin, C. and Angeles, J., “Singularity analysis of closed-loop kinematic chains,” IEEE Trans. Rob. Autom. 6 (32), 261290 (1990).CrossRefGoogle Scholar
25.Husty, M. L., “An algorithm for solving the direct kinematic of general Stewart-Gough platforms,” Mech. Mach. Theory 31 (4), 365380 (1996).CrossRefGoogle Scholar