Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-14T06:36:56.606Z Has data issue: false hasContentIssue false

Design and characterisation of a multi-DOF soft pneumatic module

Published online by Cambridge University Press:  01 June 2023

Israel Santacruz-Mondragon*
Affiliation:
Instituto Politécnico Nacional, CICATA Unidad Querétaro, Mexico Mechatronics Engineering, Universidad Anáhuac Querétaro, Querétaro, Mexico
X. Yamile Sandoval-Castro*
Affiliation:
Department of Mechatronics, CONACYT-IPN, Querétaro, Mexico
Serhat Ibrahim
Affiliation:
Leibniz University Hannover, Institute of Assembly Technology, Hannover, Germany
Mats Wiese
Affiliation:
Leibniz University Hannover, Institute of Assembly Technology, Hannover, Germany
Annika Raatz
Affiliation:
Leibniz University Hannover, Institute of Assembly Technology, Hannover, Germany
Maximiano F. Ruiz-Torres
Affiliation:
Instituto Politécnico Nacional, CICATA Unidad Querétaro, Mexico
Eduardo Castillo-Castaneda
Affiliation:
Instituto Politécnico Nacional, CICATA Unidad Querétaro, Mexico
*
Corresponding authors: Israel Santacruz-Mondragon, X. Yamile Sandoval-Castro; Emails: isra.stacruz@gmail.com, xyamile.sc@gmail.com
Corresponding authors: Israel Santacruz-Mondragon, X. Yamile Sandoval-Castro; Emails: isra.stacruz@gmail.com, xyamile.sc@gmail.com

Abstract

Bending and elongation have been some of the most studied motions in soft actuators due to the variety of their applications. For that matter, multi-DOF actuators have been developed with the purpose to generate different movements in a single actuator, mainly bending.

However, these actuators are still limited in mobility range, and some of them do not perform continuous curvatures. This paper presents the design, characterisation and implementations of a multi-DOF soft pneumatic module. The internal structure of the proposed module is composed of four channels, which generate bending in several directions. The finite element method analysis demonstrates that the actuator performs continuous curvatures for different pressure values. We present a repeatable and easy manufacturing process using the casting technique, considering the material Ecoflex 00-50; as well as the kinematic model of the actuator, taking into consideration two bending Degrees of Freedom (DOFs). Furthermore, we performed bending characterisation for all possible combinations of the four channels via computer vision, demonstrating a wide mobility range and performing continuous curvatures. Additionally, we evaluated the kinematic model with characterisation data, obtaining the angular and cartesian relationship between the pressure and continuous curvatures. On the other hand, the authors propose the design of a modular soft manipulator based on two multi-DOF modules. The kinematic model is reported. In addition, we implement a motion sequence in the manipulator to pick and place tasks.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Kim, S., Laschi, C. and Trimmer, B., “Soft robotics: A bioinspired evolution in robotics,” Trends Biotechnol. 31(5), 287294 (2013).CrossRefGoogle ScholarPubMed
Katzschmann, R. K., Marchese, A. D. and Rus, D., Hydraulic Autonomous Soft Robotic Fish for 3d Swimming (Springer International Publishing, Cham, 2016) pp. 405420.Google Scholar
Shepherd, R. F., Ilievski, F., Choi, W., Morin, S. A., Stokes, A. A., Mazzeo, A. D., Chen, X., Wang, M. and Whitesides, G. M., “Multigait soft robot,” Proc. Nat. Acad. Sci. 108(51), 2040020403 (2011).CrossRefGoogle ScholarPubMed
Tang, Z., Lu, J., Wang, Z., Ma, G., Chen, W. and Feng, H., “Development of a new multi-cavity pneumatic-driven earthworm-like soft robot,” Robotica 38(12), 22902304 (2020). doi: 10.1017/S0263574720000284.CrossRefGoogle Scholar
Ge, J. Z., Calderón, A. A., Chang, L. and Pérez-Arancibia, N. O., “An earthworm-inspired friction-controlled soft robot capable of bidirectional locomotion,” Bioinspir. Biomim. 14(3), 036004 (2019 feb).CrossRefGoogle ScholarPubMed
Branyan, C., Fleming, C., Remaley, J., Kothari, A., Tumer, K., Hatton, R. L. and Mengüç, Y., “Soft snake robots: Mechanical design and geometric gait implementation,” In: 2017 IEEE International Conference on Robotics and Biomimetics (ROBIO) (December 2017) pp. 282289.CrossRefGoogle Scholar
Zhang, B., Hu, C., Yang, P., Liao, Z. and Liao, H., “Design and modularization of multi-dof soft robotic actuators,” IEEE Robot. Automat. Lett. 4(3), 26452652 (2019).CrossRefGoogle Scholar
Marchese, A. D. and Rus, D., “Design, kinematics, and control of a soft spatial fluidic elastomer manipulator,” Int. J. Robot. Res. 35(7), 840869 (2016).CrossRefGoogle Scholar
Zhang, X. and Oseyemi, A., “A herringbone soft pneu-net actuator for enhanced conformal gripping,” Robotica 40(5), 13451360 (2022). doi: 10.1017/S0263574721001144.CrossRefGoogle Scholar
Hadi Sadati, S. M., Noh, Y., Naghibi, E. S., Althoefer, K. and Nanayakkara, T., “Stiffness Control of Soft Robotic Manipulator for Minimally Invasive Surgery (mis) Using Scale Jamming,” In: Intelligent Robotics and Applications Liu, (H., Kubota, N., Zhu, X. and Dillmann, R., eds.) Springer International Publishing, Cham, 2015) pp. 141151.CrossRefGoogle Scholar
Polygerinos, P., Wang, Z., Galloway, K. C., Wood, R. J. and Walsh, C. J., “Soft Robotic Glove for Combined Assistance and at-home Rehabilitation,” In: Robotics and Autonomous Systems. vol. 73 (Wearable Robotics, 2015) pp. 135143.Google Scholar
Davarzani, S., Ahmadi-Pajouh, M. and Ghafarirad, H., “Design of sensing system for experimental modeling of soft actuator applied for finger rehabilitation,” Robotica 40(7), 20912111 (2022). doi: 10.1017/S0263574721001533.CrossRefGoogle Scholar
Dienno, D. V., Design and Analysis of a Soft Robotic Manipulator with Base Rotation, Master’s thesis. The Pennsylvania State University, 2006).Google Scholar
Mosadegh, B., Polygerinos, P., Keplinger, C., Wennstedt, S., Shepherd, R. F., Gupta, U., Shim, J., Bertoldi, K., Walsh, C. J. and Whitesides, G. M., “Pneumatic networks for soft robotics that actuate rapidly,” Adv. Funct. Mater. 24(15), 21632170 (2014).CrossRefGoogle Scholar
Bishop-Moser, J., Krishnan, G., Kim, C. and Kota, S., “Design of soft robotic actuators using fluid-filled fiber-reinforced elastomeric enclosures in parallel combinations,” In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (October 2012) pp. 42644269.CrossRefGoogle Scholar
Wang, T., Ge, L. and Gu, G., “Programmable design of soft pneu-net actuators with oblique chambers can generate coupled bending and twisting motions,” Sens. Actuat. A: Phys. 271, 131138 (2018).CrossRefGoogle Scholar
Yap, H. K., Ng, H. and Yeow, R. C.-H., “High-force soft printable pneumatics for soft robotic applications,” Soft Robot. 3(3), 144158 (2016). doi: 10.1089/soro.2016.0030.CrossRefGoogle Scholar
Bishop-Moser, J., Krishnan, G., Kim, C. and Kota, S., “Design of Soft Robotic Actuators Using Fluid-Filled Fiber-Reinforced Elastomeric Enclosures in Parallel Combinations,” In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (2012), pp. 42644269. doi: 10.1109/IROS.2012.6385966.Google Scholar
Elsayed, Y., Augusto, V., Lekakou, C., Tao, G., Saaj, C., Ranzani, T., Cianchetti, M. and Menciassi, A., “Finite element analysis and design optimization of a pneumatically actuating silicone module for robotic surgery applications,” Soft Robot. 1(4), 255262 (2014). doi: 10.1089/soro.2014.0016.CrossRefGoogle Scholar
Xu, F.-Y., Jiang, F.-Y., Jiang, Q.-S. and Lu, Y.-X., “Soft actuator model for a soft robot with variable stiffness by coupling pneumatic structure and Jamming mechanism,” IEEE Access 8, 11 (2020). doi: 10.1109/ACCESS.2020.2968928.Google Scholar
Mustaza, S., Elsayed, Y., Lekakou, C., Saaj, C. and Jan, F., “Dynamic modeling of fiber-reinforced soft manipulator: A visco-hyperelastic material-based continuum mechanics approach,” Soft Robot. 6(3), 305317 (2019). doi: 10.1089/soro.2018.0032.CrossRefGoogle ScholarPubMed
Abidi, H., Gerboni, G., Brancadoro, M., Fras, J., Diodato, A., Cianchetti, M., Wurdemann, H. A., Althoefer, K. and Menciassi, A., “Highly dexterous 2-module soft robot for intra-organ navigation in minimally invasive surgery,” Int. J. Med. Robot. Comput. Assist. Surg. 14(1), e1875 (2018).CrossRefGoogle ScholarPubMed
Garcia, D., Ibrahim, S., Cao, B.-H. and Raatz, A., “Design and Characterization of a 3D Printed Soft Pneumatic Actuator,” In: New Trends in Mechanism and Machine Science. EuCoMeS 2020. Mechanisms and Machine Science, vol 89. Springer, Cham (2020). doi: 10.1007/978-3-030-55061-5_55 CrossRefGoogle Scholar
Raatz, A., Garcia, D., Castillo Castaneda, E. and Sandoval-Castro, Y., Robust 3D printed modular soft pneumatic actuator using origami concept for high contraction soft systems (2021).Google Scholar
Zhang, X. and Ivlev, O., “Simulation of Interaction Tasks for Pneumatic Soft Robots Using SimMechanics,” In: 19th International Workshop on Robotics in Alpe-Adria-Danube Region (RAAD 2010) (2010) pp. 149154. doi: 10.1109/RAAD.2010.5524594.CrossRefGoogle Scholar
Guo, L., Li, K., Cheng, G., Zhang, Z., Xu, C. and Ding, J., “Design and experiments of pneumatic soft actuators design and experiments of pneumatic soft actuators,” Robotica 39(10), 18061815 (2021). doi: 10.1017/S0263574720001514.CrossRefGoogle Scholar
Phillips, B., Becker, K., Kurumaya, S., Galloway, K., Whittredge, G., Vogt, D., Teeple, C., Rosen, M., Pieribone, V., Gruber, D. and Wood, R., “A dexterous, glove-based teleoperable low-power soft robotic arm for delicate deep-sea biological exploration,” Sci. Rep. 8(1) (2018). doi: 10.1038/s41598-018-33138-y.CrossRefGoogle ScholarPubMed
Kulkarni, P., Centrifugal Forming and Mechanical Properties of Silicone-Based Elastomers for Soft Robotic Actuators (New Brunswick Rutgers, 2015). PP. 26.Google Scholar
Webster, R. J. and Jones, B. A., “Design and kinematic modeling of constant curvature continuum robots: A review,” Int. J. Robot. Res. 29(13), 16611683 (2010).CrossRefGoogle Scholar
Abidi, H., Gerboni, G., Brancadoro, M., Fras, J., Diodato, A., Cianchetti, M., Wurdemann, H., Althoefer, K. and Menciassi, A., “Highly dexterous 2-module soft robot for intra-organ navigation in minimally invasive surgery,” Int. J. Med. Robot. 14(1), (2018 Feb). doi: 10.1002/rcs.1875 (Epub 05 December, 2017).CrossRefGoogle ScholarPubMed
Yap, H. K., Goh, J. C. H. and Yeow, R. C. H., “Design and Characterization of Soft Actuator for Hand Rehabilitation Application,” In: 6th European Conference of the International Federation for Medical and Biological Engineering (Lackovic, I. and Vasic, D., eds.) (Springer International Publishing, Cham, 2015) pp. 367370.CrossRefGoogle Scholar
Tan, N., Gu, X. and Ren, H., “Design, characterization and applications of a novel soft actuator driven by exible shafts,” Mech. Mach. Theory. 122, 197218 (2018).CrossRefGoogle Scholar
Polygerinos, P., Lyne, S., Wang, Z., Nicolini, L. F., Mosadegh, B., Whitesides, G. M. and Walsh, C. J., “Towards a Soft Pneumatic Glove for Hand Rehabilitation," In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (November 2013) pp. 15121517.CrossRefGoogle Scholar
Lu, X., Xu, W. and Li, X., “A soft robotic tongue mechatronic design and surface reconstruction,” IEEE/ASME Trans. Mechatron. 22(5), 21022110 (2017).CrossRefGoogle Scholar
Shi, W. and Chen, G. L. Z., “Effects of the bulk compressibility on rubber isolator’s compressive behaviors,” Adv. Mech. Eng. 9(5), 15 (2017).CrossRefGoogle Scholar
Ilievski, F., Mazzeo, A., Shepherd, R., Chen, X. and Whitesides, G., “Soft robotics for chemists,” Angew. Chem. (International ed., in English) 50(8), 18901895 (2011).CrossRefGoogle ScholarPubMed
Gong, Z., Xie, Z., Yang, X., Wang, T. and Wen, L., “Design, fabrication and kinematic modeling of a 3D-motion soft robotic arm,” In: 2016 IEEE International Conference on Robotics and Biomimetics (ROBIO) (2016), pp. 509–514. doi: 10.1109/ROBIO.2016.7866373.CrossRefGoogle Scholar
Joshi, S. and Paik, J., “Multi-dof force characterization of soft actuators,” IEEE Robot. Automat. Lett. 4(4), 36793686 (2019).CrossRefGoogle Scholar