Published online by Cambridge University Press: 13 January 2021
In this article, a novel mechanism for planar one-legged hopping robots is proposed. The robot consists of a flat foot which is pinned to the leg and a reciprocating mass which is connected to the leg via a prismatic joint. The proposed mechanism performs the hopping by transferring linear momentum between the reciprocating mass and its main body. The nonlinear equations of the motion of the robot are derived using the Euler–Lagrange equations. To accomplish a stable jump, appropriate trajectories have been planned. To guarantee a stable response for this nonlinear system, a sliding-mode controller is implemented. The performance of the hopping robot is investigated through numerical simulations. The results confirm the stability of the hopping robot through the jump cycle on a flat surface and in climbing up and down ramp and stairs.