Published online by Cambridge University Press: 07 January 2022
Dynamic path planning is a core research content for intelligent robots. This paper presents a CG-Space-based dynamic path planning and obstacle avoidance algorithm for 10 DOF wheeled mobile robot (Rover) traversing over 3D uneven terrains. CG-Space is the locus of the center of gravity location of Rover while moving on a 3D terrain. A CG-Space-based modified RRT* samples a random space tree structure. Dynamic rewiring this tree can handle the randomly moving obstacles and target in real time. Simulations demonstrate that the Rover can obtain the target location in 3D uneven dynamic environments with fixed and randomly moving obstacles.