Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-10T13:51:29.346Z Has data issue: false hasContentIssue false

Image-based visual servoing schemes for nonholonomic mobile manipulators

Published online by Cambridge University Press:  01 March 2007

Alessandro De Luca*
Affiliation:
Dipartimento di Informatica e Sistemistica, Universitá di Roma “La Sapienza”, Via Eudossiana 18, 00184 Roma, Italy.
Giuseppe Oriolo
Affiliation:
Dipartimento di Informatica e Sistemistica, Universitá di Roma “La Sapienza”, Via Eudossiana 18, 00184 Roma, Italy.
Paolo Robuffo Giordano
Affiliation:
Dipartimento di Informatica e Sistemistica, Universitá di Roma “La Sapienza”, Via Eudossiana 18, 00184 Roma, Italy.
*
*Corresponding author. E-mail: deluca@dis.uniroma1.it

Summary

We consider the task-oriented modeling of the differential kinematics of nonholonomic mobile manipulators (NMMs). A suitable NMM Jacobian is defined that relates the available input commands to the time derivative of the task variables, and can be used to formulate and solve kinematic control problems. When the NMM is redundant with respect to the given task, we provide an extension of two well-known redundancy resolution methods for fixed-base manipulators (Projected Gradient and Task Priority) and introduce a novel technique (Task Sequencing) aimed at improving performance, e.g., avoiding singularities. The proposed methods are applied then to the specific case of image-based visual servoing, where the NMM image Jacobian combines the interaction matrix and the kinematic model of the mobile manipulator. Comparative numerical results are presented for two case studies.

Type
Article
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Arai, T.. “Robots with integrated locomotion and manipulation and their future.” Proceedings of the 1996 IEEE/RSJ International Conference on Robots and Intelligent Systems (1996) pp. 541–545.Google Scholar
2.Nenchev, D. N., Umetani, Y. and Yoshida, K.. “Analysis of a redundant free-flying spacecraft/manipulator system.” IEEE Trans. Robot. Autom. 8 (1), 16 (1992).CrossRefGoogle Scholar
3.Campion, G., Bastin, G. and D'Andrea-Novel, B.. “Structural properties and classification of kinematic and dynamic models of wheeled mobile robots.” IEEE Trans. Robot. Autom. 12 (1), 4762 (1996).CrossRefGoogle Scholar
4.Seraji, H.. “A unified approach to motion control of mobile manipulators.” Int. J. Robot. Res. 17 (2), 107118 (1998).CrossRefGoogle Scholar
5.Pin, F. G., Morgansen, K. A., Tulloch, F. A., Hacker, C. J. and Gower, K. B.. “Motion planning for mobile manipulators with a non-holonomic constraint using the FSP method.” J. Robot. Syst. 13 (11), 723736 (1996).3.0.CO;2-X>CrossRefGoogle Scholar
6.De Luca, A., Oriolo, G. and Giordano, P. Robuffo. “Kinematic modeling and redundancy resolution for nonholonomic mobile robots. Proceedings of the 2006 IEEE International Conference on Robotics and Automation (2006) pp. 1867–1873.Google Scholar
7.Gardner, J. F. and Velinsky, S. A.. “Kinematics of mobile manipulators and implications for design.” J. Robot. Syst. 17 (6), 309320 (2000).3.0.CO;2-9>CrossRefGoogle Scholar
8.Fourquet, J.-Y., Bayle, B. and Renaud, M.. “Manipulability of wheeled mobile manipulators: Application to motion generation.” Int. J. Robot. Res. 22 (7–8), 565581 (2003).Google Scholar
9.Nakamura, Y., Advanced Robotics: Redundancy and Optimization (Addison-Wesley, Reading, MA, 1991).Google Scholar
10.Seraji, H.. “An on-line approach to coordinated mobility and manipulation.” Proceedings of the 1993 IEEE International Conference on Robotics and Automation (1993) pp. 28–35.Google Scholar
11.Lamiraux, F., Bayle, B., Fourquet, J.-Y. and Renaud, M.. “Kinematic control of wheeled mobile manipulators.” Proceedings of the 2002 IEEE/RSJ International Conference on Intelligent Robots and Systems (2002) pp. 1572–1577.Google Scholar
12.Bayle, B., Fourquet, J.-Y. and Renaud, M.. “Génération des mouvements des manipulateurs mobiles: Etat de l'art et perspectives.” J. Eur. Syst. Autom. 35 (6), 809845 (2001).Google Scholar
13.Campion, G., Novel, B. d'Andrea and Bastin, G.. “Controllability and State Feedback Stabilizability of Nonholonomic Mechanical Systems.” In: Advanced Robot Control (de Wit, C. Canudas, ed.) vol. 162, LNCIS, (Springer-Verlag, Berlin, 1991) pp. 106124.CrossRefGoogle Scholar
14.Yamamoto, Y. and Yun, X.. “Unified analysis on mobility and manipulability of mobile manipulators.” Proceedings of the 1999 IEEE International Conference on Robotics and Automation (1999) pp. 1200–1206.Google Scholar
15.Espiau, B., Chaumette, F. and Rives, P.. “A new approach to visual servoing in robotics.” IEEE Trans. Robot. Autom. 8 (3), 313326 (1992).CrossRefGoogle Scholar
16.Hutchinson, S., Hager, G. D. and Corke, P. I.. “A tutorial on visual servo control.” IEEE Trans. Robot. Autom. 12 (5), 651670 (1996).CrossRefGoogle Scholar
17.Sanderson, A. C. and Weiss, L. E.. “Image based visual servo control using relational graph error signals.” Proceedings of the IEEE International Conference on Cybernetics and Society (1980) pp. 1074–1077.Google Scholar
18.Wilson, W. J., Williams Hulls, C. C. and Bell, G. S.. “Relative end-effector control using cartesian position based visual servoing.” IEEE Trans. Robot. Autom. 12 (5), 684696 (1996).CrossRefGoogle Scholar
19.Espiau, B.. “Effect of Camera Calibration Errors on Visual Servoing in Robotics.” In: Experimental Robotics III (Yoshikawa, T. and Miyazaki, F., ed.) LNCIS, vol. 200, (Springer-Verlag, Berlin 1994) pp. 182192.CrossRefGoogle Scholar
20.Corke, P. I. and Hutchinson, S. A.. “A new partitioned approach to image-based visual servo control.” IEEE Trans. Robot. Autom. 17 (4), 507515 (2001).CrossRefGoogle Scholar
21.Samson, C., Espiau, B. and Le Borgne, M., Robot Control: The Task Function Approach (Oxford University Press, London, 1991).Google Scholar
22.Chaumette, F.. “Potential Problems of Stability and Convergence in Image-Based and Position-Based Visual Servoing. In: The Confluence of Vision and Control (Kriegman, D., Hager, G., and Morse, A., ed.) LNCIS, vol. 237, (Springer-Verlag, Berlin) pp. 6678.Google Scholar
23.Malis, E. and Rives, P.. “Robustness of image-based visual servoing with respect to depth distribution errors.” Proceedings of the 2003 IEEE International Conference on Robotics and Automation 2003) pp. 1056–1061.Google Scholar
24.Deguchi, K.. “Optimal motion control for image-based visual servoing by decoupling translation and rotation.” Proceedings of the 1998 IEEE/RSJ International Conference on Intelligent Robots and Systems (1998) pp. 705–711.Google Scholar
25.Malis, E., Chaumette, F. and Boudet, S.. “2-1/2-D visual servoing.” IEEE Trans. Robot. Autom. 15 (2), 238250 (1999).CrossRefGoogle Scholar
26.Morel, G., Liebezeit, T., Szewczyk, J., Boudet, S. and Pot, J.. “Explicit Incorporation of 2D Constraints in Vision Based Control of Robot Manipulators.” In: Experimental Robotics VI (Corke, P. and Trevelyan, J., ed.) LNCIS, vol. 250, (Springer-Verlag, Berlin 2000) pp. 99108.CrossRefGoogle Scholar
27.Chaumette, F. and Marchand, E.. “A redundancy-based iterative approach for avoiding joint limits: Application to visual servoing.” IEEE Trans. Robot. Autom. 17 (5), 719730 (2001).CrossRefGoogle Scholar
28.Mariottini, G. L., Oriolo, G. and Prattichizzo, D.. “Epipole-based visual servoing for nonholonomic mobile robots.” To appear in IEEE Trans. Robot., (2007).CrossRefGoogle Scholar
29.Pissard-Gibollet, R. and Rives, P.. “Applying visual servoing technique to control a mobile hand-eye system.” Proceedings of the 1995 IEEE International Conference on Robotics and Automation (1995) pp. 166–171.Google Scholar
30.Chiacchio, P., Chiaverini, S., Sciavicco, L. and Siciliano, B.. “Closed-loop inverse kinematics schemes for constrained redundant manipulators with task space augmentation and task priority strategy.” Int. J. Robot. Res. 10, 410425 (1991).CrossRefGoogle Scholar
31.De Luca, A., Oriolo, G. and Giordano, P. Robuffo. “On-line estimation of feature depth for image-based visual servoing schemes. To appear in Proceedings of the 2007 IEEE International Conference on Robotics and Automation (2007).CrossRefGoogle Scholar
32.Sciavicco, L. and Siciliano, B., Modelling and Control of Robot Manipulators (Springer, Berlin, 2000).CrossRefGoogle Scholar
33.Oriolo, G. and Mongillo, C.. “Motion planning for mobile manipulators along given end-effector paths.” Proceedings of the 2005 IEEE International Conference on Robotics and Automation (2005) pp. 2166–2172.Google Scholar
34.Maciejewski, A. A. and Klein, C. A.. “The singular value decomposition: Computation and applications to robotics.” Int. J. Robot. Res. 8 (6), 6379 (1989).CrossRefGoogle Scholar
35.Zak, M.. “Terminal attractors in neural networks.” Neural Netw. 2, 259274 (1989).CrossRefGoogle Scholar
36.Mansard, N. and Chaumette, F.. “Tasks sequencing for visual servoing.” Proceedings of the 2004 IEEE/RSJ International Conference on Robots and Intelligent Systems (2004) pp. 992–997.Google Scholar
37.Chaumette, F.. “Image moments: A general and useful set of features for visual servoing.” IEEE Trans. Robot. 20 (4), 713723 (2004).CrossRefGoogle Scholar
38.Tahri, O. and Chaumette, F.. Point-based and region-based image moments for visual servoing of planar objects. IEEE Trans. Robot. 21 (6), 11161127 (2005).CrossRefGoogle Scholar