Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-10T20:16:02.507Z Has data issue: false hasContentIssue false

Indirect force control development procedure

Published online by Cambridge University Press:  16 August 2012

Tomasz Winiarski*
Affiliation:
Institute of Control & Computation Engineering, Warsaw University of Technology, Warsaw, Poland
Adam Woźniak
Affiliation:
Institute of Control & Computation Engineering, Warsaw University of Technology, Warsaw, Poland
*
*Corresponding author. E-mail: tmwiniarski@gmail.com

Summary

Addition of extra sensors, especially video cameras and force sensors, under control of appropriate software makes robotic manipulators working in factories suitable for a range of new applications. This paper presents a method of manipulator indirect force control development, in which the force set values are specified in the operational space and the manipulator is equipped with a force sensor in its wrist. Standard control development methods need the estimation of parameters of the detailed model of a manipulator and position servos, which is a complicated and time-consuming task. Hence, in this work a time-efficient hybrid procedure of controller development is proposed consisting of both analytical and experimental stages: proposal of an approximate continuous model of a manipulator, experimental determination and verification of its parameter values using the resonance phenomenon, continuous regulator development, and digitization of the regulator.

Type
Articles
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Winiarski, T. and Zieliński, C., Position/force control with IRb6 manipulators under supervision of MRROC++ www.youtube.com/watch?v=R2zwEaxyhY0 (2011) (accessed August 1, 2012).Google Scholar
2.Winiarski, T. and Staniak, M., Rubik's Cube solving with IRb6 manipulators under supervision of MRROC++ www.youtube.com/watch?v=wJpFcy99Gh0 (2011) (accessed August 1, 2012).Google Scholar
3.MRROC++ www repository. Available at: http://github.com/wut-rcprg/mrrocpp (2012), online (accessed August 1, 2012).Google Scholar
4.Ang, M. H. Jr., “Towards pervasive robotics: Compliant motion in human environments,” Int. J. Softw. Eng. Knowl. Eng. 15 (2), 135145 (2005).CrossRefGoogle Scholar
5.Arimoto, S., “Fundamental problems of robot control: Part I, innovations in the realm of robot servo-loops,” Robotica 13 (01), 1927 (1995).CrossRefGoogle Scholar
6.Åström, K. J. and Wittenmark, B., Computer-Controlled Systems (Prentice-Hall, Upper Saddle River, NJ, 1997).Google Scholar
7.Bennett, S., A History of Control Engineering, 1800–1930 (Institution of Electrical Engineers Stevenage, UK, 1979).CrossRefGoogle Scholar
8.Bruyninckx, H. and De Schutter, J., “Specification of force-controlled actions in the task frame formalism: A synthesis,” IEEE Trans. Robot. Autom. 12 (4), 581589 (Aug. 1996).CrossRefGoogle Scholar
9.Carelli, R., Oliva, E., Soria, C. and Nasisi, O., “Combined force and visual control of an industrial robot,” Robotica 22 (2), 163171 (2004).CrossRefGoogle Scholar
10.Chen, Y., “Implementation of a Lag-Lead Compensator for Robots.” In: Proceedings of the 27th IEEE Conference on Decision and Control, Austin, Texas, USA (1988) pp. 174179.CrossRefGoogle Scholar
11.Dorato, P., “A historical review of robust control,” IEEE Control Syst. Mag. 7 (2), 4447 (1987).CrossRefGoogle Scholar
12.Findeisen, W., Grundlagen des Entwurfs von Regelungssystemen (VEB Verlag Technik, Berlin, Germany, 1973).Google Scholar
13.Fraisse, P., Dauchez, P. and Pierrot, F., “Robust force control strategy based on the virtual environment concept,” Adv. Robot. 21 (3–4), 485498 (2007).CrossRefGoogle Scholar
14.Horie, T., Tanaka, K., Abe, N. and Taki, H., “Remote Force Control of Robot Using PHANToM Haptic Model and Forcesensor,” In: Proceedings of the IEEE International Symposium on Assembly and Task Planning, Fukuoka, Japan (2001) pp. 128135.Google Scholar
15.Huang, S. and Schimmels, J. M., “Admittance selection for force-guided assembly of polygonal parts despite friction,” IEEE Trans. Robot. 20 (5), 817829 (October 2004).CrossRefGoogle Scholar
16.Jeong, S.H., Takahashi, T. and Nakano, E., “A Safety Service Manipulator System: The Reduction of Harmful Force by a Controllable Torque Limiter,” In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Sendal, Japan, vol. 1 (2004) pp. 162167.Google Scholar
17.Khatib, O., “A unified approach for motion and force control of robot manipulators: The operational space formulation,” Int. J. Robot. Autom. RA-3 (1), 4353 (Feb. 1987).Google Scholar
18.Kroger, T., Kubus, D. and Wahl, F. M., “Force and acceleration sensor fusion for compliant manipulation control in 6 degrees of freedom,” Adv. Robot. 21 (14), 16031616 (2007).CrossRefGoogle Scholar
19.Kurman, K. J., Feedback Control: Theory and Design (Elsevier Science, New York, NY, 1984).Google Scholar
20.Marlin, T. E., Process Control: Designing Processes and Control Systems for Dynamic Performance (McGraw-Hill, New York, 1995).Google Scholar
21.Mason, M., “Compliance and force control for computer controlled manipulators,” IEEE Trans. Syst. Man Cybern. 11 (6), 418432 (1981).CrossRefGoogle Scholar
22.Meeussen, W., Wise, M., Glaser, S., Chitta, S., McGann, C., Mihelich, P., Marder-Eppstein, E., Muja, M., Eruhimov, V. and Foote, T., et al., “Autonomous Door Opening and Plugging in with a Personal Robot,” In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Anchorage, Alaska, USA (2010) pp. 729736.Google Scholar
23.Seraji, H., “Adaptive Admittance Control: An Approach to Explicit Force Control in Compliant Motion,” In: Proceedings of the IEEE International Conference on Robotics and Automation, San Diego, California, USA, Vol. 4 (May 1994) pp. 27052712.Google Scholar
24.Strolz, M. and Buss, M., “Haptic rendering of actuated mechanisms by active admittance control,” Lecture Notes Comput. Sci. 5024, 712 (2008).CrossRefGoogle Scholar
25.Staniak, M., Winiarski, T. and Zieliński, C., “Parallel Visual-Force Control,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '08), Nice, France (2008).Google Scholar
26.Tsumugiwa, T., Yokogawa, R. and Hara, K., “Variable Impedance Control Based on Estimation of Human Arm Stiffness for Human-Robot Cooperative Calligraphic Task,” In: Proceedings of the 2002 IEEE Conference on Robotics and Automation,Washington D.C., USA, Vol. 1 (May 2002), pp. 644650.Google Scholar
27.Walęcki, M., Banachowicz, K. and Winiarski, T., “Research-oriented motor controllers for robotic applications,” Lecture Notes Control Inf. Sci. 422, 193203 (2012).Google Scholar
28.Winiarski, T. and Zieliński, C., “Specification of multi-robot controllers on an example of a haptic device,” Lecture Notes Control Inf. Sci. 396, 227242 (2009).Google Scholar
29.Woźniak, A., Szynkiewicz, W. and Zieliński, C., “Robot controller with a self-measurement capability enabling the identification of friction,” Arch. Control Sci. 13 (4), 391414 (2003).Google Scholar
30.Zemiti, N., Morel, G., Ortmaier, T. and Bonnet, N., “Mechatronic design of a new robot for force control in minimally invasive surgery,” IEEE/ASME Trans. Mechatronics 12 (2), 143153 (2007).CrossRefGoogle Scholar
31.Zeng, G. and Hemami, A., “An overview of robot force control,” Robotica 15, 473482 (1997).CrossRefGoogle Scholar
32.Zieliński, C., “Transition-Function Based Approach to Structuring Robot Control Software,” In: Robot Motion and Control: Recent Developments, Lecture Notes in Control and Information Sciences, Vol. 335 (Kozłowski, K., ed.) (Springer Verlag, New York, 2006) pp. 265286.CrossRefGoogle Scholar
33.Zieliński, C., Szynkiewicz, W. and Winiarski, T., “Applications of MRROC++ Robot Programming Framework,” In: Proceedings of the 5th International Workshop on Robot Motion and Control (RoMoCo'05), Dymaczewo, Poland (Kozłowski, K., ed.) (Jun 23–25 2005), pp. 251257.Google Scholar
34.Zieliński, C., Szynkiewicz, W., Winiarski, T., Staniak, M., Czajewski, W. and Kornuta, T., “Rubik's cube as a benchmark validating MRROC++ as an implementation tool for service robot control systems,” Ind. Robot Int. J. 34 (5), 368375 (2007).CrossRefGoogle Scholar
35.Zieliński, C. and Winiarski, T., “General specification of multi-robot control system structures,” Bull. Pol. Acad. Sci. Techn. Sci. 58 (1), 1528 (2010).Google Scholar
36.Zieliński, C. and Winiarski, T., “Motion Generation in the MRROC++ Robot Programming Framework,” Int. J. Robot. Res. 29 (4), 386413 (2010).CrossRefGoogle Scholar