Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-10T12:32:02.223Z Has data issue: false hasContentIssue false

Model-based joint and task space control strategies for a kinematically redundant parallel manipulator

Published online by Cambridge University Press:  07 September 2021

João Vitor de Carvalho Fontes
Affiliation:
Federal University of São Carlos, Rod. Washington Luís km 235 - SP-310 - São Carlos, Brazil
Fernanda Thaís Colombo
Affiliation:
São Carlos School of Engineering, University of São Paulo, Av. Trab. São Carlense, 400, São Carlos, Brazil
Natássya Barlate Floro da Silva
Affiliation:
Federal University of Technology - Paraná, Av. Alberto Carazzai, Cornélio Procópio, Brazil
Maíra Martins da Silva*
Affiliation:
São Carlos School of Engineering, University of São Paulo, Av. Trab. São Carlense, 400, São Carlos, Brazil
*
*Corresponding author. mairams@sc.usp.br

Abstract

One alternative to overcome the presence of singularities within Parallel Manipulators’ workspace is kinematic redundancy. This design alternative can be realized by adding an extra active joint to a kinematic chain. Due to this addition, the IKM presents an infinite number of solutions requiring a redundancy resolution scheme. Moreover, Parallel Manipulators’ control may require complex strategies due to their coupled and complex dynamic and kinematic relations. In this work, a model-free, a joint space computed torque, and a hybrid joint-task-space computed torque control strategies are experimentally compared for a kinematically redundant parallel manipulator. The latter is a novel strategy that requires the measurement of the end-effector’s pose, which is performed by an eye-to-hand limited frame rate camera. The impact of up to three kinematic redundancy levels is also experimentally evaluated using prepositioning and ongoing positioning redundancy resolution schemes. The data are assessed by evaluating a prescribed trajectory executed using a planar kinematically redundant parallel manipulator. These results indicate that kinematic redundancy can not only be used as an alternative design for reducing the presence of singular regions, as claimed in the literature, but also be used along with model-based control strategies for improving dynamic performance and accuracy of parallel manipulators.

Type
Research Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Merlet, J.-P., Parallel Robots (Springer, Netherlands, 2006).Google Scholar
Company, O., Pierrot, F., Krut, S., Baradat, C. and Nabat, V., “Par2: A spatial mechanism for fast planar two-degree-of-freedom pick-and-place applications,” Meccanica 46(1), 239248 (2011). doi: 10.1007/s11012-010-9413-x CrossRefGoogle Scholar
Li, Y. and Bone, G. M., “Are Parallel Manipulators More Energy Efficient?,” Proceedings 2001 IEEE International Symposium on Computational Intelligence in Robotics and Automation (Cat. No.01EX515), Banff, AB, Canada (2001) pp. 4146. doi: 10.1109/CIRA.2001.1013170.CrossRefGoogle Scholar
Gosselin, C. and Angeles, J., “Singularity analysis of closed-loop kinematic chains,” IEEE Trans. Robot. Automat. 6(3), 281290 (1990). doi: 10.1109/70.56660 CrossRefGoogle Scholar
Haug, E. J., “Parallel manipulator domains of singularity free functionality,” Mech. Des. Struct. Mach, 1–25 (2020). doi: 10.1080/15397734.2020.1728547 CrossRefGoogle Scholar
Chen, X. and Guo, J., “Effects of spherical clearance joint on dynamics of redundant driving spatial parallel mechanism,” Robotica, 1–17 (2020). doi: 10.1017/S0263574720000909 CrossRefGoogle Scholar
Azar, A. T., Zhu, Q., Khamis, A. and Zhao, D., “Control design approaches for parallel robot manipulators: a review,” Int. J. Model. Ident. Cont. 28(3), 199 (2017). doi: 10.1504/IJMIC.2017.10007051 CrossRefGoogle Scholar
Saied, H., Chemori, A., Rafei, M. E., Francis, C. and Pierrot, F., “From Non-sModel-Based to Model-Based Control of PKMs: A Comparative Study,” In: Mechanism, Machine, Robotics and Mechatronics Sciences(2018) pp. 153169. Springer International Publishing.Google Scholar
Song, X., Zhao, Y., Chen, C., Zhang, L. and Lu, X., “A PD computed torque control method with online self-gain tuning for a 3UPS-PS parallel robot,” Robotica, 1–13 (2021). doi: 10.1017/S0263574720001368 CrossRefGoogle Scholar
Kotlarski, J., Abdellatif, H., Ortmaier, T. and Heimann, B., “Enlarging the Useable Workspace of Planar Parallel Robots Using Mechanisms of Variable Geometry,” In: 2009 ASME/IFToMM International Conference on Reconfigurable Mechanisms and Robots, London, UK (2009) pp. 63–72.Google Scholar
Müller, A. and Hufnagel, T., “Model-based control of redundantly actuated parallel manipulators in redundant coordinates,” Robot. Autonom. Syst. 60(4), 563–571 (2012). doi: 10.1016/j.robot.2011.11.014.CrossRefGoogle Scholar
Kotlarski, J., Heimann, B. and Ortmaier, T., “Experimental Validation of the Influence of Kinematic Redundancy on the Pose Accuracy of Parallel Kinematic Machines,” In: 2011 IEEE International Conference on Robotics and Automation Shanghai, China (2011) pp. 19231929. doi: 10.1109/ICRA.2011.5980056.CrossRefGoogle Scholar
Jiang, Y., Li, T., Wang, L. and Chen, F., “Improving tracking accuracy of a novel 3-DOF redundant planar parallel kinematic machine,” Mech. Mach. Theory 119, 198218 (2018). doi: 10.1016/j.mechmachtheory.2017.09.012.CrossRefGoogle Scholar
Xie, F., Liu, X.-J. and Wang, J., “Performance evaluation of redundant parallel manipulators assimilating motion/force transmissibility,” Int. J. Adv. Robot. Syst. 8(5), 113124 (2011). doi: 10.5772/50904 CrossRefGoogle Scholar
Fontes, J. V. C. and da Silva, M. M., “On the dynamic performance of parallel kinematic manipulators with actuation and kinematic redundancies,” Mech. Mach. Theory 103, 148166 (2016). doi: 10.1016/j.mechmachtheory.2016.05.004 CrossRefGoogle Scholar
Ruiz, A. G., Santos, J. C., Croes, J., Desmet, W. and da Silva, M. M., “On redundancy resolution and energy consumption of kinematically redundant planar parallel manipulators,” Robotica, 36(6), 809821 (2018). doi: 10.1017/s026357471800005x.CrossRefGoogle Scholar
Abadi, B. N. R., Mahzoon, M. and Farid, M., “Singularity-free trajectory planning of a 3-RPRR planar kinematically redundant parallel mechanism for minimum actuating effort,” (2019) Iran. J. Sci. Technol. Trans. Mech. Eng. 43(4), 739–751 (2019). doi: 10.1007/s40997-018-0234-1 CrossRefGoogle Scholar
Siciliano, B., “Kinematic control of redundant robot manipulators: A tutorial,” J. Intell. Robot. Syst. 3(3), 201212 (1990). doi: 10.1007/bf00126069 CrossRefGoogle Scholar
Fontes, J. V. C., Santos, J. C. and da Silva, M. M., “Numerical and experimental evaluation of the dynamic performance of kinematically redundant parallel manipulators,” J. Braz. Soc. Mech. Sci. Eng. 40(3), 142 (2018). doi: 10.1007/s40430-018-1072-1 CrossRefGoogle Scholar
Faroni, M., Beschi, M., Tosatti, L. M. and Visioli, A., “A predictive approach to redundancy resolution for robot manipulators,” IFAC-Papers OnLine 50(1), 89758980 (2017). doi: 10.1016/j.ifacol.2017.08.1324.CrossRefGoogle Scholar
Santos, J. C. and da Silva, M. M., “Redundancy resolution of kinematically redundant parallel manipulators via differential dynamic programing,” J. Mech. Robot. 9(4), 041016 (2017) doi: 10.1115/1.4036739.CrossRefGoogle Scholar
Hassan, A., El-Habrouk, M. and Deghedie, S., “Inverse kinematics of redundant manipulators formulated as quadratic programming optimization problem solved using recurrent neural networks: A review,” Robotica 38(8), 14951512 (2020). doi: 10.1017/S0263574719001590 CrossRefGoogle Scholar
Ferrentino, E. and Chiacchio, P., “On the optimal resolution of inverse kinematics for redundant manipulators using a topological analysis,” ASME. J. Mech. Robot. 12(3), 031002 (2020). doi: 10.1115/1.4045178 CrossRefGoogle Scholar
Paccot, F., Andref, N. and Martinet, P., “Review on the dynamic control of parallel kinematic machines: Theory and experiments,” Int. J. Robot. Res. 28(3), 395416 (2009). doi: 10.1177/0278364908096236.CrossRefGoogle Scholar
Bellakehal, S., Andreff, N., Mezouar, Y. and Tadjine, M., “Vision/force control of parallel robots,” Mech. Mach. Theory 46(10), 13761395 (2011). doi: 10.1016/j.mechmachtheory.2011.05.010.CrossRefGoogle Scholar
Mohan, S., Mohanta, J. K., Huesing, M. and Corves, B., “Dual-Loop Motion Control for Geometric Errors and Joint Clearances Compensation of a Planar 2PRP+1PPR Manipulator,In: Mechanisms, Transmissions and Applications (2017) pp. 171180. Springer International Publishing.Google Scholar
Colombo, F. T., Fontes, J. V. C. and da Silva, M. M., “A visual servoing strategy under limited frame rates for planar parallel kinematic machines,” J. Intell. Robot. Syst. 96(1), 95107 (2019). doi: 10.1007/s10846-019-00982-7.CrossRefGoogle Scholar
Di Lillo, P., Antonelli, G. and Natale, C., “Effects of dynamic model errors in task-priority operational space control,” Robotica, 1–12 (2021). doi: 10.1017/S0263574720001411.CrossRefGoogle Scholar
Coutinho A., A. and Hess-Coelho, T., “Improving the performance of parallel robots by applying distinct hybrid control techniques,” Robotica, 1–25 (2021). doi: 10.1017/S0263574721000874.CrossRefGoogle Scholar
Pagis, G., Bouton, N., Briot, S. and Martinet, P., “Enlarging parallel robot workspace through type-2 singularity crossing,” Cont. Eng. Pract. 39 111 (2015). doi: 10.1016/j.conengprac.2015.01.009.CrossRefGoogle Scholar
Nguyen, K. T., Hoang, M. C., Go, G., Kang, B., Choi, E., Park, J.-O. and Kim, C.-S., “Regularization-based independent control of an external electromagnetic actuator to avoid singularity in the spatial manipulation of a microrobot,” Cont. Eng. Pract. 97, 104340 (2020). doi: 10.1016/j.conengprac.2020.104340.CrossRefGoogle Scholar
Luces, M., Mills, J. K. and Benhabib, B., “A review of redundant parallel kinematic mechanisms,” J. Intell. Robot. Syst. Theory Appl. 86, 175198 (2017). doi: 10.1007/s10846-016-0430-4.CrossRefGoogle Scholar
Thanh, T. D., Kotlarski, J., Heimann, B. and Ortmaier, T., “Dynamics identification of kinematically redundant parallel robots using the direct search method,” Mech. Mach. Theory, 59, 277295 (2012). doi: 10.1016/j.mechmachtheory.2012.02.002 CrossRefGoogle Scholar
Uzunoglu, E., Tatlicioglu, E. and Dede, M., “ A multi-priority controller for industrial macro-micro manipulation,” Robotica 39(2), 217232 (2021). doi: 10.1017/S0263574720000338 CrossRefGoogle Scholar
Fontes, J. V. C., da Silva, N. B. F. and da Silva, M. M., “Feedforward Control for the Kinematically Redundant Manipulator 3PRRR,” In: Advances in Mechanism and Machine Science (2019) pp. 21192128. Springer International Publishing. doi: 10.1007/978-3-030-20131-9-210.CrossRefGoogle Scholar
Wu, J., Wang, J. and You, Z., “A comparison study on the dynamics of planar 3-DOF 4-RRR, 3-RRR and 2-RRR parallel manipulators,” Robot. Comput. Integr. Manufact. 27(1), 150156 (2011). doi: 10.1016/j.rcim.2010.07.001 CrossRefGoogle Scholar
Alba-Gomez, O., Wenger, P. and Pamanes, A., “Consistent Kinetostatic Indices for Planar 3-DOF Parallel Manipulators, Application to the Optimal Kinematic Inversion,” In: 29th Mechanisms and Robotics ASME Conference, Parts A and B, vol. 7 (2005) pp. 765774. doi: 10.1115/DETC2005-84326.CrossRefGoogle Scholar
Reveles, R. D., Pamanes, J. A. and Wenger, G. P., “Trajectory planning of kinematically redundant parallel manipulators by using multiple working modes,” Mech. Mach. Theory 98, 216230 (2016). doi: 10.1016/j.mechmachtheory.2015.09.011.CrossRefGoogle Scholar