Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-10T16:11:10.031Z Has data issue: false hasContentIssue false

Modular-robotic structures for scalable collective actuation

Published online by Cambridge University Press:  30 October 2015

Jakub Lengiewicz*
Affiliation:
Institute of Fundamental Technological Research of the Polish Academy of Sciences, Pawiñskiego 5B, 02-106 Warsaw, Poland E-mails: mkursa@ippt.pan.pl, pholob@ippt.pan.pl
Michał Kursa
Affiliation:
Institute of Fundamental Technological Research of the Polish Academy of Sciences, Pawiñskiego 5B, 02-106 Warsaw, Poland E-mails: mkursa@ippt.pan.pl, pholob@ippt.pan.pl
Paweł Hołobut
Affiliation:
Institute of Fundamental Technological Research of the Polish Academy of Sciences, Pawiñskiego 5B, 02-106 Warsaw, Poland E-mails: mkursa@ippt.pan.pl, pholob@ippt.pan.pl
*
*Corresponding author. E-mail: jleng@ippt.pan.pl

Summary

We propose a new class of modular-robotic structures, intended to produce forces which scale with the number of modules. We adopt the concept of a spherical catom and extend it by a new connection type which is relatively strong but static. We examine analytically and numerically the mechanical properties of two collective-actuator designs. The simulations are based on the discrete element method (DEM), with friction and elastic deformations taken into account. One of the actuators is shown to generate forces proportional to its volume. This property seems necessary for building modular structures of useful strength and dimensions.

Type
Articles
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Støy, K., Emergent Control of Self-Reconfigurable Robots Ph.D. Thesis (The Maersk Mc-Kinney Moller Institute for Production Technology, University of Southern Denmark, Odense, Denmark, 2004).Google Scholar
2. Yim, M., Wei-Min Shen, B. Salemi, Rus, D., Moll, M., Lipson, H., Klavins, E. and Chirikjian, G. S., “Modular self-reconfigurable robot systems,” IEEE Robot. Autom. Mag. 14 (1), 4352 (2007).Google Scholar
3. Goldstein, S. C., Campbell, J. D. and Mowry, T. C., “Programmable matter,” IEEE Comput. 38 (6), 99101 (2005).Google Scholar
4. Murata, S., Kurokawa, H., Yoshida, E., Tomita, K. and Kokaji, S., “A 3-D Self-Reconfigurable Structure,” Proceedings of the IEEE International Conference on Robotics and Automation, IEEE, Leuven (1998) pp. 432–439.Google Scholar
5. Tomita, K., Kurokawa, H., Yoshida, E., Kamimura, A., Murata, S. and Kokaji, S., “Lattice-based modular self-reconfigurable systems,” In: Robots and Lattice Automata (Sirakoulis, G. Ch. and Adamatzky, A., eds.) (Springer, 2015).Google Scholar
6. Rus, D. and Vona, M., “Crystalline robots: Self-reconfiguration with compressible unit modules,” Auton. Robots 10 (1), 107124 (2001).Google Scholar
7. Romanishin, J., Gilpin, K. and Rus, D., “M-Blocks: Momentum-Driven, Magnetic Modular Robots,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, Tokyo (2013) pp. 4288–4295.Google Scholar
8. Tolley, M. T., Kalontarov, M., Neubert, J., Erickson, D. and Lipson, H., “Stochastic modular robotic systems: A study of fluidic assembly strategies,” IEEE Trans. Robot. 26 (3), 518530 (2010).Google Scholar
9. Campbell, J. and Pillai, P., “Collective actuation,” Int. J. Robot. Res. 27 (3–4), 299314 (2008).Google Scholar
10. Christensen, D. J., Campbell, J. and Støy, K., “Anatomy-based organization of morphology and control in self-reconfigurable modular robots,” Neural Comput. Appl. 19 (6), 787805 (2010).Google Scholar
11. De Rosa, M., Goldstein, S. C., Lee, P., Campbell, J. and Pillai, P., “Scalable Shape Sculpting Via Hole Motion: Motion Planning in Lattice-Constrained Modular Robots,” Proceedings of the IEEE International Conference on Robotics and Automation, IEEE, Orlando, Florida (2006) pp. 1462–1468.Google Scholar
12. Bhat, P., Kuffner, J., Goldstein, S. C. and Srinivasa, S., “Hierarchical Motion Planning for Self-Reconfigurable Modular Robots,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, Beijing (2006) pp. 886–891.Google Scholar
13. Fitch, R. and Butler, Z., “Million module march: Scalable locomotion for large self-reconfiguring robots,” Int. J. Robot. Res. 27 (3–4), 331343 (2008).Google Scholar
14. Mabed, H. and Bourgeois, J., “Towards Programmable Material: Flexible Distributed Algorithm for Modular Robots Shape-Shifting,” IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), IEEE, Besacon (2014) pp. 408–414.Google Scholar
15. White, P. J., Revzen, S., Thorne, C. E. and Yim, M., “A general stiffness model for programmable matter and modular robotic structures,” Robotica 29, 103121 (2011).Google Scholar
16. Hołobut, P., Kursa, M. and Lengiewicz, J., “A Class of Microstructures for Scalable Collective Actuation of Programmable Matter,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, Chicago, Illinois (2014) pp. 3919–3925.Google Scholar
17. Kirby, B. T., Aksak, B., Campbell, J. D., Hoburg, J. F., Mowry, T. C., Pillai, P. and Goldstein, S. C., “A Modular Robotic System using Magnetic Force Effectors,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, San Diego, California (2007) pp. 2787–2793.Google Scholar
18. Reid, J., Vasilyev, V. and Webster, R. T., “Building Micro-Robots: A Path to Sub-mm3 Autonomous Systems,” Nanotech 3, 174177 (2008).Google Scholar
19. Karagozler, M. E., Goldstein, S. C. and Reid, J. R., “Stress-Driven MEMS Assembly + Electrostatic Forces = 1 mm Diameter Robot,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, St. Louis, Missouri (2009) pp. 2763–2769.Google Scholar
20. Karagozler, M. E., Thaker, A., Goldstein, S. C. and Ricketts, D. S., “Electrostatic Actuation and Control of Micro Robots using a Post-Processed High-Voltage SOI CMOS Chip,” Proceedings of the IEEE International Symposium on Circuits and Systems, IEEE, Rio de Janeiro (2011) pp. 2509–2512.Google Scholar
21. Neubert, J., Rost, A. and Lipson, H., “Self-soldering connectors for modular robots,” IEEE Trans. Robot. 30 (6), 13441357 (2014).Google Scholar
22. Dzwolak, W. and Marszalek, P. E., “Zipper-like properties of [poly(l-lysine) + poly(l-glutamic acid)] beta-pleated molecular self-assembly,” Chem. Commun. 44, 55575559 (2005).Google Scholar
23. Thompson, D., Sikora, M., Szymczak, P. and Cieplak, M., “A multi-scale molecular dynamics study of the assembly of micron-size supraparticles from 30 nm alkyl-coated nanoparticles,” Phys. Chem. Chem. Phys. 15 (21), 81328143 (2013).CrossRefGoogle ScholarPubMed
24. Knaian, A. N., Electropermanent Magnetic Connectors and Actuators: Devices and Their Application in Programmable Matter Ph.D. Thesis (MIT, Department of Electrical Engineering and Computer Science, Cambridge, Massachusetts, United States, 2010).Google Scholar
25. McNeill Alexander, R., Principles of Animal Locomotion (Princeton University Press, Princeton, New Jersey, United States, 2006).Google Scholar
26. Šmilauer, V., Catalano, E., Chareyre, B., Dorofeenko, S., Duriez, J., Gladky, A., Kozicki, J., Modenese, C., Scholtès, L., Sibille, L., Stránský, J. and Thoeni, K., “Yade Reference Documentation,” In: Yade Documentation (Šmilauer, V., ed.) (The Yade Project, 1st ed., online), http://yade-dem.org. 2010.Google Scholar
27. Šmilauer, V. and Chareyre, B., “Yade DEM Formulation,” In: Yade Documentation (Šmilauer, V., ed.) (The Yade Project, 1st ed., online), http://yade-dem.org/doc/formulation.html,” 2010.Google Scholar