Published online by Cambridge University Press: 01 September 1999
This paper proposes a navigation system for a non-holonomic mobile robot. The navigation is based on a “look and move” approach. The aim is to define intermediate points called sub-goals through which the robot must pass. This algorithm is particularly suitable for navigation in an unknown environment and obstacle avoidance. Between two successive sub-goals, a shortest path planning solution is adopted. We have adopted the “Dubins' car” because of the environment perception sensor, a 180° laser scanner. In order to minimize the calculation time, the theoretical results of shortest path are approximated by simple equations. The navigation algorithm proposed can be used either in a structured or unstructured environment. In this context the local map construction is based on the segmentation of a structured environment; so for an unstructured environment, a suitable algorithm must be used instead.