Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-02-04T02:42:50.909Z Has data issue: false hasContentIssue false

A simple bipedal robot model demonstrating speed-dependent gait transition

Published online by Cambridge University Press:  27 January 2025

Hirofumi Shin*
Affiliation:
Frontier Robotics, Honda R&D Co. Ltd., Wako-shi, Saitama, Japan
Shuhei Ikemoto
Affiliation:
Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Fukuoka, Japan Research Center for Neuromorphic AI Hardware, Kyushu Institute of Technology, Fukuoka, Japan
*
Corresponding author: Hirofumi Shin; Email: hirofumi.shin@ieee.org

Abstract

This paper introduces a novel bipedal robot model designed for adaptive transition between walking and running gaits solely through changes in locomotion speed. The bipedal robot model comprises two sub-components: a mechanical model for the legs that accommodates both walking and running and a continuous state model that does not explicitly switch states. The mechanical model employs a structure combining a linear cylinder with springs, dampers, and stoppers, designed to have mechanistic properties of both the inverted pendulum model used for walking and the spring-loaded inverted pendulum model used for running. The state model utilizes a virtual leg representation to abstractly describe the actual support leg, capable of commonly representing both a double support leg in walking and a single support leg in running. These models enable a simple gait controller to determine the kick force and the foot touchdown point based solely on the parameter of the target speed, thus allowing a robot to walk and run stably. Hence, simulation validation demonstrates the adaptive robot transition to an energy-efficient gait depending on locomotion speed without explicit gait-type instructions and maintaining stable locomotion across a wide range of speeds.

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexander, R. M., “Mechanics of Bipedal Locomotion,” In: Zoology, (Elsevier, 1976) pp. 493504.CrossRefGoogle Scholar
Alexander, R. M., “Optimization and gaits in the locomotion of vertebrates,” Physiol Rev. 69(4), 11991227 (1989).CrossRefGoogle ScholarPubMed
Anand, M., Seipel, J. and Rietdyk, S., “A modelling approach to the dynamics of gait initiation,” J. R. Soc. Interface 14(128), 20170043 (2017).CrossRefGoogle Scholar
Aoi, S., Katayama, D., Fujiki, S., Tomita, N., Funato, T., Yamashita, T., Senda, K. and Tsuchiya, K., “A stability-based mechanism for hysteresis in the walk–trot transition in quadruped locomotion,” J. R. Soc. Interface 10(81), 20120908 (2013).CrossRefGoogle ScholarPubMed
Aoi, S., Yamashita, T., Ichikawa, A. and Tsuchiya, K., “Hysteresis in gait transition induced by changing waist joint stiffness of a quadruped robot driven by nonlinear oscillators with phase resetting,” In: IEEE/RSJ International Conference on Intelligent Robots and Systems, (2010) pp. 19151920.Google Scholar
Bhounsule, P. A., “Control of a compass gait walker based on energy regulation using ankle push-off and foot placement,” Robotica 33(6), 13141324 (2015).CrossRefGoogle Scholar
Blickhan, R., “The spring-mass model for running and hopping,” J. Biomech. 22(11-12), 12171227 (1989).CrossRefGoogle ScholarPubMed
Cavagna, G., Saibene, F. and Margaria, R., “Mechanical work in running,” J. Appl. Physiol. 19(2), 249256 (1964).CrossRefGoogle ScholarPubMed
Dadashzadeh, B. and Macnab, C. J., “Slip-based control of bipedal walking based on two-level control strategy,” Robotica 38(8), 14341449 (2020).CrossRefGoogle Scholar
Davoodi, A., Mohseni, O., Seyfarth, A. and Sharbafi, M. A., “From template to anchors: Transfer of virtual pendulum posture control balance template to adaptive neuromuscular gait model increases walking stability,” Roy. Soc. Open Sci. 6(3), 181911 (2019).CrossRefGoogle ScholarPubMed
Dickinson, M. H., Farley, C. T., Full, R. J., Koehl, M., Kram, R. and Lehman, S., “How animals move: An integrative view,” Science 288(5463), 100106 (2000).CrossRefGoogle ScholarPubMed
Diedrich, F. J. and Warren, W. H. Jr, “Why change gaits? dynamics of the walk-run transition,” J. Exp. Psychol. Hum. Percept. Perform. 21(1), 183202 (1995).CrossRefGoogle ScholarPubMed
Ding, J., Moore, T. Y. and Gan, Z., “A template model explains jerboa gait transitions across a broad range of speeds,” Front. Bioeng. Biotechnol. 10, 804826 (2022).CrossRefGoogle ScholarPubMed
Egle, T., Englsberger, J. and Ott, C., “Analytical center of mass trajectory generation for humanoid walking and running with continuous gait transitions,” In: IEEE-RAS International Conference on Humanoid Robots, (2022) pp. 630637.Google Scholar
Geyer, H., Saranli, U., Goswami, A. and Vadakkepat, P., “Gait Based On the Spring-Loaded Inverted Pendulum,” In: Humanoid Robotics: A Reference, (Springer, Netherlands, 2018) pp. 125.Google Scholar
Geyer, H., Seyfarth, A. and Blickhan, R., “Compliant leg behaviour explains basic dynamics of walking and running,” Proc. R. Soc. B: Biol. Sci. 273(1603), 28612867 (2006).CrossRefGoogle ScholarPubMed
Han, B., Luo, X., Liu, Q., Zhou, B. and Chen, X., “Hybrid control for slip-based robots running on unknown rough terrain,” Robotica 32(7), 10651080 (2014).CrossRefGoogle Scholar
Hanasaki, S., Tazaki, Y., Nagano, H. and Yokokohji, Y., “Running trajectory generation including gait transition between walking based on the time-varying linear inverted pendulum mode,” In: IEEE-RAS International Conference on Humanoid Robots, (IEEE, 2022) pp. 851857.CrossRefGoogle Scholar
Hodgins, J. K., “Biped gait transitions,” In: IEEE International Conference on Robotics and Automation, (1991) pp. 20922097.Google Scholar
Hoyt, D. F. and Taylor, C. R., “Gait and the energetics of locomotion in horses,” Nature 292(5820), 239240 (1981).CrossRefGoogle Scholar
Jana, S. and Gupta, A., “Walking and jogging at similar speeds with a passive slip model based compliant biped,” J. Biomech. Sci. Eng. 19(4), 24-00158–24-00158 (2024).CrossRefGoogle Scholar
Ju, W., Li, B., Kang, R., Zhang, S. and Song, Z., “Design of a torsional compliant mechanism with given discrete torque-deflection points for nonlinear stiffness elastic actuator,” Robotica 41(9), 25712587 (2023).CrossRefGoogle Scholar
Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., Harada, K., Yokoi, K. and Hirukawa, H., “Biped walking pattern generation by using preview control of zero-moment point,” In: IEEE International Conference on Robotics and Automation, (IEEE, Vol. 2, 2003) pp. 16201626.CrossRefGoogle Scholar
Kamioka, T., Kaneko, H., Kuroda, M., Tanaka, C., Shirokura, S., Takeda, M. and Yoshiike, T., “Push recovery strategy of dynamic gait transition between walking, running and hopping,” Int. J. Hum. Robot. 16(03), 1940001 (2019).CrossRefGoogle Scholar
Khan, M. S. and Mandava, R. K., “A review on gait generation of the biped robot on various terrains,” Robotica 41(6), 18881930 (2023).CrossRefGoogle Scholar
Kobayashi, T., Sekiyama, K., Hasegawa, Y., Aoyama, T. and Fukuda, T., “Unified bipedal gait for autonomous transition between walking and running in pursuit of energy minimization,” Robot. Auton. Syst. 103, 2741 (2018).CrossRefGoogle Scholar
Koo, I. M., Trong, T. D., Lee, Y. H., Moon, H., Koo, J., Park, S. and Choi, H. R., “Biologically inspired gait transition control for a quadruped walking robot,” Auton. Robot. 39(2), 169182 (2015).CrossRefGoogle Scholar
Kram, R., Domingo, A. and Ferris, D. P., “Effect of reduced gravity on the preferred walk-run transition speed,” J. Exp. Biol. 200(4), 821826 (1997).CrossRefGoogle ScholarPubMed
Kuo, A. D., “The six determinants of gait and the inverted pendulum analogy: A dynamic walking perspective,” Hum. Movement Sci. 26(4), 617656 (2007).CrossRefGoogle ScholarPubMed
Kuo, A. D., Donelan, J. M. and Ruina, A., “Energetic consequences of walking like an inverted pendulum: Step-to-step transitions,” Exerc. Sport Sci. Rev. 33(2), 8897 (2005).CrossRefGoogle Scholar
Kwon, O. and Park, J. H., “Gait transitions for walking and running of biped robots,” In: IEEE international conference on robotics and automation, (IEEE, Vol. 1, 2003) pp. 13501355.CrossRefGoogle Scholar
Ma, T., Zhu, J., Zhang, K., Xiao, W., Liu, H., Leng, Y., Yu, H. and Fu, C., “Gait phase subdivision and leg stiffness estimation during stair climbing,” IEEE T. Neur. Sys. Reh. 30, 860868 (2022).CrossRefGoogle ScholarPubMed
McMahon, T. A. and Cheng, G. C., “The mechanics of running: How does stiffness couple with speed?,” J. Biomech. 23(Suppl 1), 6578 (1990).CrossRefGoogle ScholarPubMed
Mesesan, G., Schuller, R., Englsberger, J., Ott, C. and Albu-Schäffer, A., “Unified motion planner for walking, running, and jumping using the three-dimensional divergent component of motion,” IEEE T. Robot. 39(6), 44434463 (2023).CrossRefGoogle Scholar
Minetti, A. E., “Biomechanics: Walking on other planets,” Nature 409(6819), 467469 (2001).CrossRefGoogle ScholarPubMed
Orin, D. E., Goswami, A. and Lee, S.-H., “Centroidal dynamics of a humanoid robot,” Auton. Robot. 35(2-3), 161176 (2013).CrossRefGoogle Scholar
Owaki, D., Osuka, K. and Ishiguro, A., “Gait transition between passive dynamic walking and running by changing the body elasticity,” In: SICE Annual Conference, (IEEE, 2008) pp. 25132518.CrossRefGoogle Scholar
Raibert, M. H.. Legged Robots that Balance (MIT press, 1986).CrossRefGoogle Scholar
Rezazadeh, S. and Hurst, J. W., “Control of atrias in three dimensions: Walking as a forced-oscillation problem,” Int. J. Robot. Res. 39(7), 774796 (2020).CrossRefGoogle Scholar
Santos, C. P. and Matos, V., “Gait transition and modulation in a quadruped robot: A brainstem-like modulation approach,” Robot. Auton. Syst. 59(9), 620634 (2011).CrossRefGoogle Scholar
Segers, V., De Smet, K., Van Caekenberghe, I., Aerts, P. and De Clercq, D., “Biomechanics of spontaneous overground walk-to-run transition,” J. Exp. Biol. 216(16), 30473054 (2013).Google ScholarPubMed
Shahbazi, M., Babuška, R. and Lopes, G. A., “Unified modeling and control of walking and running on the spring-loaded inverted pendulum,” IEEE T. Robot. 32(5), 11781195 (2016a).CrossRefGoogle Scholar
Shahbazi, M., Lopes, G. and Babuska, R., “Automated transitions between walking and running in legged robots,” IFAC Proc. Vol. 47(3), 21712176 (2014).CrossRefGoogle Scholar
Shahbazi, M., Saranlı, U., Babuška, R. and Lopes, G. A., “Approximate analytical solutions to the double-stance dynamics of the lossy spring-loaded inverted pendulum,” Bioinspir. Biomim. 12(1), 016003 (2016b).CrossRefGoogle Scholar
Smaldone, F. M., Scianca, N., Lanari, L. and Oriolo, G., “From walking to running: 3d humanoid gait generation via mpc,” Frontiers in Robotics and AI 9, 876613 (2022).CrossRefGoogle ScholarPubMed
Sugihara, T., “Standing stabilizability and stepping maneuver in planar bipedalism based on the best com-zmp regulator,” In: IEEE International Conference on Robotics and Automation, (IEEE, 2009) pp. 19661971.CrossRefGoogle Scholar
Sugihara, T. and Morisawa, M., “A survey: Dynamics of humanoid robots,” Adv. Robotics 34(21-22), 13381352 (2020).CrossRefGoogle Scholar
Taga, G., Yamaguchi, Y. and Shimizu, H., “Self-organized control of bipedal locomotion by neural oscillators in unpredictable environment,” Biol. Cybern. 65(3), 147159 (1991).CrossRefGoogle ScholarPubMed
Takenaka, T., Matsumoto, T. and Yoshiike, T., “Real time motion generation and control for biped robot-1 st report: Walking gait pattern generation,” In: IEEE/RSJ International Conference on Intelligent Robots and Systems, (IEEE, 2009) pp. 10841091.CrossRefGoogle Scholar
Vasudevan, E. V., Patrick, S. K. and Yang, J. F., “Gait transitions in human infants: Coping with extremes of treadmill speed,” PLoS One 11(2), e0148124 (2016).CrossRefGoogle Scholar
Voigt, M. and Hansen, E. A., “The puzzle of the walk-to-run transition in humans,” Gait Posture 86, 319326 (2021).CrossRefGoogle ScholarPubMed
Vukobratović, M. and Borovac, B., “Zero-moment point–thirty five years of its life,” Int. J. Hum. Robot. 1(01), 157173 (2004).CrossRefGoogle Scholar
Wang, B., Zhang, K., Ma, X. and Jia, L., “A compliant leg design combining pantograph structure with leaf springs,” Robotica 42(2), 332346 (2024).CrossRefGoogle Scholar
Supplementary material: File

Shin and Ikemoto supplementary material

Shin and Ikemoto supplementary material
Download Shin and Ikemoto supplementary material(File)
File 8.8 MB