Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2025-01-02T16:28:08.896Z Has data issue: false hasContentIssue false

Stability analysis of the operational space control for industrial robots using their own joint velocity PI controllers

Published online by Cambridge University Press:  01 November 2008

Karla Camarillo
Affiliation:
División de Estudios de Posgrado e Investigación, Instituto Tecnológico de la Laguna, Torreón, Coah., 27000(Mexico).
Ricardo Campa*
Affiliation:
División de Estudios de Posgrado e Investigación, Instituto Tecnológico de la Laguna, Torreón, Coah., 27000(Mexico).
Víctor Santibáñez
Affiliation:
División de Estudios de Posgrado e Investigación, Instituto Tecnológico de la Laguna, Torreón, Coah., 27000(Mexico).
Javier Moreno-Valenzuela
Affiliation:
Centro de Investigación y Desarrollo de Tecnología Digital del IPN, Tijuana, B.C., 22510(Mexico).
*
*Corresponding author. E-mail: recampa@itlalaguna.edu.mx

Summary

Operational space control of industrial robots is addressed in this document. We analyze a two-loop hierarchical control with the resolved motion rate controller (RMRC) as outer loop and the joint velocity PI controller as inner loop; the latter is the typical velocity controller used in industrial robots. We prove, by the first time, that these simple controllers make the solutions of the closed-loop system uniformly ultimately bounded. Additionally, we give some simple guidelines for the selection of the control gains so as to ensure an explicit bound of the tracking error.

Type
Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Sciavicco, L. and Siciliano, B., Modelling and Control of Robot Manipulators (Springer–Verlag, London, 2000).CrossRefGoogle Scholar
2.Khatib, O., “A unified approach for motion and force control of robot manipulatots: The operational space formulation,” IEEE J. Robt. Autom. 3 (1), 4352 (1987).CrossRefGoogle Scholar
3.Aicardi, M., Caiti, A., Cannata, G. and Casalino, G., “Stability and robustness analysis of a two hierarchical architecture for a closed loop control of robots in the operational space,” Proccedings of the IEEE International Conference on Robotics & Automation, Nagoya, Japan (1995) 2771–2778.Google Scholar
4.Spong, M. and Vidyasagar, M., Robot Dynamics and Control (John Wiley and Sons, New York, NY, 1989).Google Scholar
5.Kelly, R. and Moreno, J., “Manipulator motion control in operational space using joint velocity inner loops,” Automatica 41, 14231432 (2005).CrossRefGoogle Scholar
6.Whitney, D. E. and Holzknecht, A., “Resolved motion rate control of manipulators and human prosthesesIEEE Trans. on Man–Mach. Syst., 10 (2), 4753 (1969).CrossRefGoogle Scholar
7.Khalil, H., Nonlinear Systems (Prentice Hall, New York, 2005).Google Scholar
8.Kawamura, S., Miyazaki, F. and Arimoto, S., “Is a Local Linear PD Feedback Control Law Effective for Trajectory Tracking of Robot Motion?,” Proceedings of the IEEE International Conference on Robotics & Automation, Philadelphia, PA, USA (1988) 1335–1340.Google Scholar
9.Wang, X., and Chen, L. K., “Proving the Uniform Boundedness of Some Commonly Used Control Schemes for Robots,” Proceedings of the IEEE International Conference on Robotics & Automation, Scottsdale, AZ, USA (1989) 1491–1496.Google Scholar
10.Qu, Z. and Dorsey, J., “Robust tracking control of robots by a linear feedback law,” IEEE Trans. Autom. Control 36 (9), 10811084 (1991).CrossRefGoogle Scholar
11.Corless, M. J. and Leitmann, G., “Continuous state feedback guaranteeing uniform ultimate boundedness for uncertain dynamic systems,” IEEE Trans. Autom. Control 26 (5), 11391144 (1981).CrossRefGoogle Scholar
12.Kelly, R., Santibáñez, V. and Loría, A., Control of Robot Manipulators in Joint Space (Springer–Verlag, London, 2005).Google Scholar