Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-10T19:54:30.521Z Has data issue: false hasContentIssue false

A symmetric parallel Schönflies-motion manipulator for pick-and-place operations

Published online by Cambridge University Press:  25 February 2011

O. Altuzarra
Affiliation:
Mechanical Engineering Department, University of the Basque Country UPV/EHU, Alameda de Urquijo s/n 48013 Bilbao, Spain
B. Şandru
Affiliation:
Mechanical Engineering Department, University of the Basque Country UPV/EHU, Alameda de Urquijo s/n 48013 Bilbao, Spain
Ch. Pinto
Affiliation:
Mechanical Engineering Department, University of the Basque Country UPV/EHU, Alameda de Urquijo s/n 48013 Bilbao, Spain
V. Petuya*
Affiliation:
Mechanical Engineering Department, University of the Basque Country UPV/EHU, Alameda de Urquijo s/n 48013 Bilbao, Spain
*
*Corresponding author. E-mail: victor.petuya@ehu.es

Summary

This paper presents a new symmetric parallel Schönflies-motion generator. The design is an evolution of a previous robot with linear inputs. The complete kinematic analysis of the 4-degree-of-freedom (dof) parallel manipulator is presented. The degrees of freedom are obtained from the Group Theory, the direct and inverse position problems are solved obtaining the manipulator's workspace, and the Jacobian analysis is presented. Then the isotropic configurations of the manipulator are discussed and the local dexterity map within the workspace is produced. Finally, two alternatives of a rotational mechanical device, which will increase the angular end-effector range, are proposed.

Type
Articles
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Huang, Z. and Li, Q., “General methodology for type synthesis of symmetrical lower-mobility parallel manipulators and several novel manipulators,” Int. J. Robot. Res. 21 (2), 131145 (2002).CrossRefGoogle Scholar
2.Fattah, A. and Kasai, G., “Kinematics and dynamics of a parallel manipulator with a new architecture,” Robotica 18, 535543 (2000).CrossRefGoogle Scholar
3.Di Gregorio, R., “A new family of spherical parallel manipulators,” Robotica 20, 353358 (2002).CrossRefGoogle Scholar
4.Romdhane, L., Affi, Z. and Fayet, Z. M., “Design and singularity analysis of a 3-translational-dof in-parallel manipulator,” ASME J. Mech. Des. 124, 419426 (2002).CrossRefGoogle Scholar
5.Ceccarelli, M., Fundamentals of Mechanics of Robotic Manipulation (Kluwer/Springer, Dordrecht, Netherlands, 2004) (ISBN 1-4020-1810-X).CrossRefGoogle Scholar
6.Angeles, J., “The Degree of Freedom of Parallel Robots: A Group-Theoretic Approach,” Proceedings of the 2005 IEEE International Conference on Robotics and Automation, Barcelona, Spain (April 18–22, 2005) pp. 10171024.Google Scholar
7.Hervé, J. M., “Analyse structurelle des mécanismes par groupe des déplacements,” Mech. Mach. Theory 13 (4), 437450 (1978).CrossRefGoogle Scholar
8.Kong, X. and Gosselin, C., “Type synthesis of 3T1R 4-DOF parallel manipulators based on Screw theory,” IEEE Trans. Robot. Autom. 20 (2), 181190 (2004).CrossRefGoogle Scholar
9.Angeles, J., Caro, S., Khan, W. and Morozov, A., “Kinetostatic design of an innovative Schönflies-motion generator,” Proc. I MECH E Part C J. Mech. Eng. Sci. 220 (7), 935943 (2006).CrossRefGoogle Scholar
10.Gauthier, J.-F., Angeles, J., Nokleby, S. and Morozov, A., “The kinetostatic conditioning of two-limb Schönflies motion generators,” ASME J. Mech. Robot. 1 (1), 011010-1–011010-12 (2009).CrossRefGoogle Scholar
11.Richard, P. L., Gosselin, C. M. and Kong, X., “Kinematic analysis and prototyping of a partially decoupled 4-DOF 3T1R parallel manipulator,” ASME J. Mech. Des. 129 (6), 611616 (2007).CrossRefGoogle Scholar
12.Company, O., Marquet, F. and Pierrot, F., “A new high-speed 4-dof parallel robot synthesis and modelling issues,” IEEE Trans. Robot. Autom. 19 (3), 411420 (2003).CrossRefGoogle Scholar
13.Salgado, O., Altuzarra, O., Amezua, E. and Hernández, A., “A parallelogram-based parallel manipulator for Schönflies motion,” ASME J. Mech. Des. 129 (12), 12431250 (2007).CrossRefGoogle Scholar
14.Tsai, L. W., Robot Analysis: The Mechanics of Serial and Parallel Manipulators (Wiley & Sons, New York, 1999).Google Scholar
15.Schwartz, E., Manseur, R. and Doty, K., “Noncomensurate systems in robotics,” Int. J. Robot. Autom. 17 (2), 16 (2002).Google Scholar
16.Yoshikawa, T., “Manipulability of robot manipulators,” Int. J. Robot. Res. 4 (2), 39, 1985.CrossRefGoogle Scholar
17.Golub, G. H. and Van Loan, C. F., Matrix Computations, 3rd ed. (The John Hopkins University Press, Baltimore, 1996).Google Scholar
18.Khan, W. A. and Angeles, J., “The kinetostatic optimization of robotic manipulators: The inverse and the direct problems,” ASME J. Mech. Des. 128 (1), 168178 (2006).CrossRefGoogle Scholar