Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-27T07:35:32.808Z Has data issue: false hasContentIssue false

Active fault-tolerant control of a Schon̈flies parallel manipulator based on time delay estimation

Published online by Cambridge University Press:  19 April 2021

Pegah Ghaf-Ghanbari
Affiliation:
Faculty of Mechanical and Energy Engineering, Shahid Beheshti University, Tehran, Iran E-mails: pegah.g.ghanbari@gmail.com, m_mazare@sbu.ac.ir
Mahmood Mazare
Affiliation:
Faculty of Mechanical and Energy Engineering, Shahid Beheshti University, Tehran, Iran E-mails: pegah.g.ghanbari@gmail.com, m_mazare@sbu.ac.ir
Mostafa Taghizadeh*
Affiliation:
Faculty of Mechanical and Energy Engineering, Shahid Beheshti University, Tehran, Iran E-mails: pegah.g.ghanbari@gmail.com, m_mazare@sbu.ac.ir
*
*Corresponding author. Email: mo_taghizadeh@sbu.ac.ir

Abstract

In this paper, a new hybrid fault-tolerant control (FTC) strategy based on nonsingular fast integral-type terminal sliding mode (NFITSM) and time delay estimation (TDE) is proposed for a Schönflies parallel manipulator. In order to detect, isolate, and accommodate actuator faults, TDE is used as an online fault estimation algorithm. Stability analysis of the closed-loop system is performed using Lyapunov theory. The proposed controller performance is compared with conventional sliding mode and feedback linearization control methods. The obtained results reveal the superiority of the proposed FTC based on TDE and NFITSM.

Type
Article
Copyright
© Shahid Beheshti University, 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Chen, M. and Tao, G., “Adaptive fault-tolerant control of uncertain nonlinear large-scale systems with unknown dead zone,” IEEE Trans. Cybern. 46(8), 1851–1862 (2016).CrossRefGoogle ScholarPubMed
Hu, Q., Shi, Y. and Shao, X., “Adaptive fault-tolerant attitude control for satellite reorientation under input saturation,” Aerospace Sci. Technol. 78(1), 171182 (2018).10.1016/j.ast.2018.04.015CrossRefGoogle Scholar
Gao, Z., Zhou, Z., Qian, M. S. and Lin, J., “Active fault tolerant control scheme for satellite attitude system subject to actuator time-varying faults,In: IET Control Theory Applications (Institution of Engineering and Technology, 2018) pp. 405412.Google Scholar
Meng, Q., Zhang, T., Gao, X. and Song, J., “Adaptive sliding mode fault-tolerant control of the uncertain stewart platform based on offline multibody dynamics,” IEEE/ASME Trans. Mechatron. 19(3), 882894 (2014).CrossRefGoogle Scholar
Meng, Q., Zhang, T., He, J.-f. and Song, J.-y., “Adaptive vector sliding mode fault-tolerant control of the uncertain Stewart platform based on position measurements only,” Robotica 34(6), 12971321 (2016).10.1017/S0263574714002276CrossRefGoogle Scholar
Farid, Y., Majd, V. J. and Ehsani-Seresht, A., “Fractional-order active fault-tolerant force-position controller design for the legged robots using saturated actuator with unknown bias and gain degradation,” Mech. Syst. Signal Process. 104, 465486 (2018).CrossRefGoogle Scholar
Karras, G. C. and Fourlas, G. K., “Model predictive fault tolerant control for omni-directional mobile robots,” J. Intell. Rob. Syst. 97(3), 635655 (2020).10.1007/s10846-019-01029-7CrossRefGoogle Scholar
Azizi, A., Nourisola, H. and Shoja-Majidabad, S., “Fault tolerant control of wind turbines with an adaptive output feedback sliding mode controller,” Renewable Energy 135(1), 5565 (2019).CrossRefGoogle Scholar
Lan, J., Patton, R. J. and Zhu, X., “Fault-tolerant wind turbine pitch control using adaptive sliding mode estimation,” Renewable Energy 116(1), 219231 (2018).CrossRefGoogle Scholar
Cho, S., Gao, Z. and Moan, T., “Model-based fault detection, fault isolation and fault-tolerant control of a blade pitch system in floating wind turbines,” Renewable Energy 120(1), 306321 (2018).CrossRefGoogle Scholar
Van, M., Mavrovouniotis, M. and Ge, S. S., “An adaptive backstepping nonsingular fast terminal sliding mode control for robust fault tolerant control of robot manipulators,” IEEE Trans. Syst. Man Cybern. Syst. 49(7), 14481458 (2019).CrossRefGoogle Scholar
Van, M. and Kang, H.-J., “Robust fault-tolerant control for uncertain robot manipulators based on adaptive quasi-continuous high-order sliding mode and neural network,” Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 229(8), 14251446 (2015).CrossRefGoogle Scholar
Shen, Q., Jiang, B., Shi, P. and Lim, C., “Novel neural networks-based fault tolerant control scheme with fault alarm,” IEEE Trans. Cybern. 44(11), 21902201 (2014).CrossRefGoogle ScholarPubMed
Shen, Q., Jiang, B. and Cocquempot, V., “Adaptive fuzzy observer-based active fault-tolerant dynamic surface control for a class of nonlinear systems with actuator faults,” IEEE Trans. Fuzzy Syst. 22(2), 338349 (2014).CrossRefGoogle Scholar
Awan, Z. S., Ali, K., Iqbal, J. and Mehmood, A., “Adaptive backstepping based sensor and actuator fault tolerant control of a manipulator,” J. Electr. Eng. Technol. 14(6), 24972504 (2019).CrossRefGoogle Scholar
Shi, P., Liu, M. and Zhang, L., “Fault-tolerant sliding-mode-observer synthesis of Markovian jump systems using quantized measurements,” IEEE Trans. Ind. Electr. 62(9), 59105918 (2015).CrossRefGoogle Scholar
Yin, S., Yang, H. and Kaynak, O., “Sliding mode observer-based FTC for Markovian jump systems with actuator and sensor faults,” IEEE Trans. Autom. Control 62(7), 35513558 (2017).CrossRefGoogle Scholar
Van, M., Kang, H.-J. and Suh, Y.-S., “A novel neural second-order sliding mode observer for robust fault diagnosis in robot manipulators,” Int. J. Precis. Eng. Manuf. 14(3), 397406 (2013).10.1007/s12541-013-0055-5CrossRefGoogle Scholar
Van, M., Ge, S. S. and Ren, H., “Finite time fault tolerant control for robot manipulators using Time delay estimation and continuous nonsingular fast terminal sliding mode control,” IEEE Trans. Cybern. 47(7), 16811693 (2017).CrossRefGoogle Scholar
Van, M., Kang, H.-J., Suh, Y.-S. and Shin, K.-S., “A robust fault diagnosis and accommodation scheme for robot manipulators,” Int. J. Control Autom. Syst. 11(2), 377388 (2013).CrossRefGoogle Scholar
Man, Z., Paplinski, A. P. and Wu, H. R., “A robust MIMO terminal sliding mode control scheme for rigid robotic manipulators,” IEEE Trans. Autom. Control 39(12), 24642469 (1994).Google Scholar
Yu, X. and Zhihong, M., “Fast terminal sliding-mode control design for nonlinear dynamical systems,” IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 49(2), 261264 (2002).Google Scholar
Feng, Y., Yu, X. and Man, Z., “Non-singular terminal sliding mode control of rigid manipulators,” Automatica 38(12), 21592167 (2002).CrossRefGoogle Scholar
Yang, L. and Yang, J., “Nonsingular fast terminal sliding-mode control for nonlinear dynamical systems,” Int. J. Robust Nonlinear Control 21(16), 1865–1879 (2011).Google Scholar
Mazare, M., Taghizadeh, M. and Ghaf-Ghanbari, P., “Fault-tolerant control based on adaptive super-twisting nonsingular integral-type terminal sliding mode for a delta parallel robot,” J. Braz. Soc. Mech. Sci. Eng. 42.8, 115 (2020).Google Scholar
Van, M., Do, X. P. and Mavrovouniotis, M., “Self-tuning fuzzy PID-nonsingular fast terminal sliding mode control for robust fault tolerant control of robot manipulators,” ISA Trans. 96, 6068 (2020).CrossRefGoogle ScholarPubMed
Veloce In, “Penta Robotics Products.” https://pentarobotics.com/products/ (accessed April 9, 2021).Google Scholar
Wu, G., “Kinematic analysis and optimal design of a wall-mounted four-limb parallel Schönflies-motion robot for pick-and-place operations,” J. Intell. Rob. Syst. 85, 663677 (2017).10.1007/s10846-016-0377-5CrossRefGoogle Scholar
Li, Y. and Xu, Q., “Kinematics and inverse dynamics analysis for a general 3-PRS spatial parallel mechanism,” Robotica 23(2), 219229 (2005).CrossRefGoogle Scholar
Li, Y., Huang, T. and Chetwynd, D. G., “An approach for smooth trajectory planning of high-speed pick-and-place parallel robots using quintic B-splines,” Mecha. Mach. Theory 126(1), 479490 (2018).CrossRefGoogle Scholar
Piegl, L. and Tiller, W., The NURBS BookReference 31 has not been cited in the text. Please indicate where it should be cited or delete it from the Reference List and subsequent References can be renumbered. (Springer-Verlag, Berlin, Heidelberg, 1997).Google Scholar
Barre, P.-J., Bearee, R., Borne, P. and Dumetz, E., “Influence of a jerk controlled movement law on the vibratory behaviour of high-dynamics systems,” J. Intell. Rob. Syst. 42(3), 275293 (2005).CrossRefGoogle Scholar
Jin, M., Kang, S. H. and Chang, P. H., “Robust compliant motion control of robot with nonlinear friction using time-delay estimation,” IEEE Trans. Ind. Electr. 55(1), 258269 (2008).CrossRefGoogle Scholar
Lee, J., Chang, P. H. and Jin, M., “Adaptive integral sliding mode control with time-delay estimation for robot manipulators,” IEEE Trans. Ind. Electr. 64(8), 67966804 (2017).CrossRefGoogle Scholar
Hsia, T. C. S., “A new technique for robust control of servo systems,” IEEE Trans. Ind. Electr. 36(1), 17 (1989).CrossRefGoogle Scholar
Hsia, T. C. S., Lasky, T. A. and Guo, Z., “Robust independent joint controller design for industrial robot manipulators,” IEEE Trans. Ind. Electr. 38(1), 2125 (1991).CrossRefGoogle Scholar
Lee, J., Chang, P. H. and Jamisola, R. S., “Relative impedance control for dual-arm robots performing asymmetric bimanual tasks,” IEEE Trans. Ind. Electr. 61(7), 37863796 (2014).CrossRefGoogle Scholar
Baek, J., Jin, M. and Han, S., “A new adaptive sliding-mode control scheme for application to robot manipulators,” IEEE Trans. Ind. Electr. 63(6), 36283637 (2016).CrossRefGoogle Scholar