Published online by Cambridge University Press: 16 April 2010
Collision-free path planning for static robots is a demanding manifold of contemporary robotics research, vastly due to the growing industrial applications. In this paper, a novel ‘visibility map’-based heuristic algorithm is used to generate near-optimal safe path for a three-dimensional congested robot workspace. The final path is obtainable in terms of joint configurations, by considering the Configuration Space of the task space. The developed algorithm has been verified initially by considering representative 2D workspaces, cluttered with different obstacles with regular geometries and then after with the spatial endeavour. A case study reveals the effectiveness of the developed modules of the configuration space mapping, pertaining to a five degrees-of-freedom low payload articulated robot.