Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-28T12:34:37.587Z Has data issue: false hasContentIssue false

An Algorithm for Robust Tracking Control of Robots

Published online by Cambridge University Press:  09 March 2009

Zoran R. Novaković
Affiliation:
Institut Joz˘ef Stefan, University of Ljubljana, Jamova 39, 61000 Ljubljana, (Yugoslavia)
Leon Z˘lajpah
Affiliation:
Institut Joz˘ef Stefan, University of Ljubljana, Jamova 39, 61000 Ljubljana, (Yugoslavia)

Summary

Based on the Lyapunov theory, a new principle was developed for synthesizing robot tracking control in the presence of model uncertainties. First, a general Lyapunov-like robust tracking concept is presented. It is then used as a basis for the control algorithm derived via a quadratic Lyapunov function constructed using a sliding mode function (based on the output error). Control synthesis is made in task-space, without any need for solving the inverse kinematics problem, i.e. one does not need to inver the Jacobian matrix. It is also shown that the tracking error becomes close to zero in a settling time which is less than a prescribed finite time. Simulation results are incorporated.

Type
Article
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Luh, Y.S.J., Walker, W.M. and Paul, R.P., “On-line computational schemes for mechanical manipulatorsJ. Dyn. Syst. Meas. Contr. 102, 6976 (1980).CrossRefGoogle Scholar
2.Paul, R.P., Robot Manipulators: Mathematics, Programming and Control (MIT Press, Cambridge, 1982).Google Scholar
3.Spong, M.W., Thorp, J.S. and Kleinwaks, J.M., “Robust microprocessor control of robot manipulatorsAutomatica 23, No. 3, 373379 (1987).CrossRefGoogle Scholar
4.Slotine, J.J. & Sastry, S.S., “Tracking control of nonlinear Systems using sliding surfaces with application to robot manipulatorsInt. J. Control 38, 465492 (1983).CrossRefGoogle Scholar
5.Balestrino, A., De Maria, G. & Zinober, A.S.I., “Nonlinear adaptive model-following controlAutomatica 20, No. 5, 559568 (1984).CrossRefGoogle Scholar
6.Samson, C., “Robust non-Iinear control of robotic manipulators” Proc. IEEE CDC San Antonio 233239 (1983).CrossRefGoogle Scholar
7.Horowtiz, I.M., Synthesis of Feedback Systems (Academic, New York, 1963).Google Scholar
8.Grujić, Lj.T. “On non-linear tracking phenomena and problems” Proc. Al 83, IASTED Symp. Lille 4548 (1983).Google Scholar
9.Grujić, Lj.T., “Tracking analysis for non-stationary non-linear SystemsProc. IEEE International Conference in Robotics and AutomationS. Francisco 2, 713721 (1986).Google Scholar
10.Grujić, Lj.T. and Novaković, Z.R., “Feedback principle via Lyapunov function concept rejects robot control synthesis drawbacks” Proc. 6th IASTED Symp. MIC Grindelwald, Switzerland227230 (1987).Google Scholar
11.Novaković, Z.R., “Robot tracking control synthesis using the sliding mode. A task-space approach”, Proc. IMACS World Congress on Scientific Computation Paris 1, 433435 (1988).Google Scholar
12.la Salle, J.P., The Stability of Dynamical Systems (SIAM, Philadelphia, 1976).CrossRefGoogle Scholar
13.Burton, J.A. and Zinober, A.S.I., “Continuous aproximation of variable structure controlInt. J. Systems Sci. 17, No. 6, (1986).CrossRefGoogle Scholar
14.Asada, H. and Slotine, J.J., Robot Analysis and Control (J. Wiley & Sons, New York, 1985).Google Scholar
15.Lunze, J., Robust Multivariable Feedback Control (ZKI Inf. 3/ 84, Berlin DDR, 1984).Google Scholar
16.Barrett, M.F., “Conservativism with robustness tests for linear feedback control SystemsProc. IEEE Conf. Decision & ControlAlbuquerque (1980).CrossRefGoogle Scholar
17.Novaković, Z.R. “On the Robustness of Stability of the Multivariable Control Systems” (in Serbocroatian) M. Sc. Thesis (Faculty of Mechanical Engineering, University of Belgrade, 1987).Google Scholar
18.Khalil, W., Liegeois, A. and Fournier, A., “Dynamic control of articulated mechanical SystemsRIARO Automatic Series 13, No. 2, 189201 (1979).Google Scholar
19.Markiewicz, B.R., “Analysis of the computed torque drive method and comparison with conventional position servo for a computer-controlled manipulatorJet Propulsion Lab. Technical Memorandum 33601 (03, 1973).Google Scholar
20.Bejczy, A.K., “Robot arm dynamics and control” Jet Propulsion Lab. Technical Memorandum 33369 (02, 1974).Google Scholar
21.Khatib, O., “Dynamic control of manipulators in operational spaces” Proc. 6th Congress on Theory of Machines and Mechanisms, CISM New Delhi, 11281131 (1983).Google Scholar
22.Slotine, J.J., “Robust control of robot manipulatorsInt. J. Robotics Research 4, No. 2, 4964 (1985).CrossRefGoogle Scholar
23.Spong, M.W., Thorp, J.S. and Kleinwaks, J.M., “The control of robot manipulators with bounded input, Part II: Robustness and disturbance rejection” Proc. 23rd IEEE CDC Las Vegas (1984).CrossRefGoogle Scholar
24.Vidyasagar, M., Control System Synthesis: A Factorization Approach (MIT Press, Cambridge, 1985).Google Scholar
25.Spong, M.W. and Vidyasagar, M., “Robust linear compensator design for nonlinear robotic controlIEEE J. R&A 3, No. 4, 345351 (1987).Google Scholar
26.Luh, Y.S.J., Walker, W.M. and Paul, R.P., “Resolved acceleration control of mechanical manipulatorsIEEE-Tr. AC 25, No. 3, 468474 (1980).CrossRefGoogle Scholar
27.Tarn, T.J., Bejczy, A.K., Isidori, A. & Y. Chen, “Nonlinear feedback in robot arm control” Proc. 23rd IEEE CDC Las Vegas (1984).Google Scholar
28.Novaković, Z.R. and Žlajpah, L., “Robust tracking control for robots using the sliding mode. A task-space approach” Proc. IFAC Symposium on Robot Control SYROCO 88 Karlsruhe 851856 (1988).Google Scholar