Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-26T07:47:19.623Z Has data issue: false hasContentIssue false

An optimal planning technique for an intelligent robot's part assembly in partially unstructured environments

Published online by Cambridge University Press:  01 January 1998

Changman Son
Affiliation:
332060 Georgia Tech Station, Atlanta, Georgia 30332-1425, USA

Abstract

An efficient algorithm for generating an optimal plan for part-bringing tasks, using robotic manipulators, is introduced. The task of transporting a micro-part in a partially unstructured environment, that includes obstacles whose locations are not initially known, is introduced with the optimal plan formulated on the basis of the observed environmental conditions. Fuzzy set theory, well-suited to the management of uncertainty, is introduced to address the uncertainty associated with the part-bringing procedure. A part-bringing algorithm for generating the optimal plan related to a part assembly, despite existing obstacles, is presented. It is shown that the machine organizer using a sensor system can intelligently determine an optimal plan, based on explicit performance criteria, to overcome environmental uncertainty. The algorithm utilizes knowledge processing functions such as machine reasoning, planning, memory, and decision-making. Simulation results show the effectiveness of the proposed approach. The proposed algorithm is applicable not only to a wide range of robotic tasks including pick and place operations and maneuvering mobile based robots around obstacles, but also to the control of unmanned aircraft.

Type
Research Article
Copyright
© 1998 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)