Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-27T09:15:28.617Z Has data issue: false hasContentIssue false

Analysis and optimization of a wire actuated, single effect n-R robotic structure

Published online by Cambridge University Press:  06 August 2013

Alain Favetto*
Affiliation:
Istituto Italiano di Tecnologia IIT@Polito, Center for Space Human Robotics, Corso Trento 21, 10129 Turin, Italy Dipartimento di Automatica e Informatica, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Turin, Italy
Silvia Appendino
Affiliation:
Istituto Italiano di Tecnologia IIT@Polito, Center for Space Human Robotics, Corso Trento 21, 10129 Turin, Italy
Alessandro Battezzato
Affiliation:
Istituto Italiano di Tecnologia IIT@Polito, Center for Space Human Robotics, Corso Trento 21, 10129 Turin, Italy
Fai Chen Chen
Affiliation:
Istituto Italiano di Tecnologia IIT@Polito, Center for Space Human Robotics, Corso Trento 21, 10129 Turin, Italy Dipartimento di Meccanica, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Turin, Italy
Mehdi Mousavi
Affiliation:
Istituto Italiano di Tecnologia IIT@Polito, Center for Space Human Robotics, Corso Trento 21, 10129 Turin, Italy Dipartimento di Meccanica, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Turin, Italy
Francesco Pescarmona
Affiliation:
Istituto Italiano di Tecnologia IIT@Polito, Center for Space Human Robotics, Corso Trento 21, 10129 Turin, Italy
Giuseppe Carlo Calafiore
Affiliation:
Dipartimento di Automatica e Informatica, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Turin, Italy
*
*Corresponding author. E-mail: alain.favetto@polito.it

Summary

This paper investigates the kinematics and the optimization of a generic robotic structure composed by N serial rotary joints and actuated with a mono-directional tendon system. In the first part of the paper, the specific case that brought us to develop this study is introduced; the main motivations and the scenario with its specific constraints and design choices have been described.

Since a complete and detailed analysis of an n-R serial structure with this kind of characteristics could not be found in the literature, the study of the kinematics and the parameter optimization of such a structure is treated as generally as possible, in order to make the procedure and the results applicable for any similar structure. Finally, in the last part, through the introduction of specific constraints and the definition of the parameters, the general analysis has been applied to the specific case of study: the preliminary study of a finger exoskeleton for an astronaut suit.

Type
Articles
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Ferraresi, C., Paoloni, M. and Pescarmona, F., “A new 6-DOF parallel robotic structure actuated by wires: The WiRo-6.3,” J. Robot. Syst. 21 (11), 581595 (2004).Google Scholar
2.Ferraresi, C., Paoloni, C. and Pescarmona, F., “A new methodology for the determination of the workspace of six-DOF redundant parallel structures actuated by nine wires,” Robotica 25 (1), 113120 (2007).Google Scholar
3.Maeda, K., Tadokoro, S., Takamori, T., Hiller, M. and Verhoeven, R., “On Design of a Redundant Wire-Driven Parallel Robot WARP Manipulator,” IEEE International Conference on Robotics and Automation, Detroit, Michigan (1999) pp. 895900.Google Scholar
4.Albus, J., Bostelman, R. and Dagalakis, N., “NIST robocrane,” J. Robot. Syst. 10 (5), 709724 (1993).Google Scholar
5.Kawamura, S., Choe, W. and Tanak, S., “Development of an Ultrahigh Speed Robot Falcon Using Wire Driven Systems,” IEEE International Conference on Robotic and Automation, Nagoya, Japan (1995) pp. 215220.Google Scholar
6.Merlet, J. P., Parallel Robots, 2nd ed. (Springer, Netherlands, 2006).Google Scholar
7.Merlet, J. P., “Kinematics of the Wire-Driven Parallel Robot Marionet Using Linear Actuators,” International Conference on Robotics and Automation, Pasadena, California (2008) pp. 38573862.Google Scholar
8.Gouttefarde, M., Merlet, J. P. and Daney, D., “Wrench.Feasible Workspace of Parallel Cable Driven Mechanism,” International Conference on Robotics and Automation, Rome, Italy (2007) pp. 14921497.Google Scholar
9.“Shadow Dexterous Hand,” 18 June 2013 http://www.shadowrobot.com/hand/Google Scholar
11.Scott, D. and Leonov, A., Two Sides of the Moon: Our Story of the Cold War Space Race (Thomas Dunne Books, St. Martin's Griffin, New York, 2006).Google Scholar
12.Graziosi, D., Stein, J., Ross, A. and Kosmo, J., “Phase VI Advanced EVA Glove Development and Certification for the International Space Station”. SAE Technical Paper 2001-01-2163, 2001, doi:10.4271/2001-01-2163.Google Scholar
13.Singh, N., Ariafar, S. and Nicolas, A., “Space Environment Threats and Their Impact in Near Earth Orbits” Proceedings of the 57th International Astronautical Congress, Valencia, Spain (Oct. 2–6, 2006).Google Scholar
14.O'Hara, J. M., Briganti, M., Cleland, J. and Winfield, D. “Extravehicular Activities Limitation Study. Volume II: Establishment of Physiological and Performance Criteria for EVA Gloves” Final Report (Report number ASEVALS- FR-8701), NASA Contract no NAS-9–17702, 1988.Google Scholar
15.Bishu, R. R. and Klute, G., “The effects of extra vehicular activity (EVA) gloves on human hand performance,” Int. J. Indust. Ergon. 16 (3), 165174 (1995).Google Scholar
16.Benson, E. A., England, S. A., Mesloh, M., Thompson, S. and Rajulu, S., “Use of Traditional and Novel Methods to Evaluate the Influence of an EVA Glove on Hand Performance,” ICES 2010, Barcelona Spain (Jul. 11–15, 2010).Google Scholar
17.Favetto, A., Chen, F., Ambrosio, E. P., Manfredi, D. and Calafiore, G. C., “Towards a Hand Exoskeleton for a Smart EVA Glove,” Proceedings of the International Conference on Robotics and Biomimetics, Tianjin, China (Dec. 14–18, 2010), pp. 12931298.Google Scholar
18.Dumont, C., Albus, G., Meesenburg, D. K., Fanghänel, J., Stürmer, K. M. and Nägerl, H., “Morphology of the interphalangeal joint surface and its functional relevance,” J. Hand Surg. 33 (1), 918 (2008).Google Scholar
19.Chiri, A., Giovacchini, F., Vitiello, N. and Cattin, E., “HANDEXOS: Towards an Exoskeleton Device for the Rehabilitation of the Hand,” Proceedings of the International Conference on Intelligent Robots and Systems, St. Louis, USA (Oct. 11–15, 2009) pp. 11061111.Google Scholar
20.DiCicco, M., Lucas, L. and Matsuoka, Y., “Comparison of Control Strategies for an EMG Controlled Orthotic Exoskeleton for the Hand,” Proceedings of the International Conference on Robotics & Automation, New Orleans, LA (Apr. 26–May 1, 2004) pp. 16221627.Google Scholar
22.Berselli, G., Piccinini, M. and Vassura, G., “Comparative Evaluation of the Selective Compliance in Elastic Joints for Robotic Structures,” Proceedings of the IEEE International Conference on Robotics and Automation, Shanghai, China (May 8–13, 2011) pp. 46264631.Google Scholar
23.In, H., Lee, D. and Cho, K. J., “Investigation of Friction Characteristics of a Tendon Driven Wearable Robotic Hand,” Proceedings of the International Conference on Control, Automation and Systems, Gyeonggi-do, Korea (Oct. 27–30, 2010), pp. 568573.Google Scholar
24.Ceccarelli, M., Fundamentals of Mechanics of Robotic Manipulation (Springer, Dordretch, 2004).Google Scholar
25.Carbone, G., Ottaviano, E. and Ceccarelli, M., “An optimum design procedure for both serial and parallel manipulators,” IMechE C J. Mech. Eng. Sci. 221 (7)829843, (2007).Google Scholar
26.Carbone, G., Ottaviano, E. and Ceccarelli, M., “Optimality Criteria for the Design of Manipulators,” Proceedings of the IEEE Conference on Robotics, Automation and Mechatronics, Chengdu, China (Sep. 21–24, 2008) pp. 768773.Google Scholar
27.Carbone, G. (Ed.), GRASPING in Robotics (Springer, London, 2013).Google Scholar
28.Bartle, R. G., The Elements of Integration and Lebesgue Measure (Wiley, New York, 1995).CrossRefGoogle Scholar
29.Dunford, N. and Schwartz, J. T., Linear Operators, Part 1: General Theory (Wiley-Interscience, Hoboken, New Jersey, 1958).Google Scholar
30.Leijnse, J. N. A. L., Quesada, P. M. and Spoor, C. W., “Kinematic evaluation of the finger's interphalangeal joints coupling mechanism-variability, flexion-extension differences, triggers, locking swanneck deformities, anthropometric correlations,” J. Biomech. 43 (12), 23812393 (2010).Google Scholar
31.Fahn, C. S. and Sun, H., “Development of a data glove with reducing sensors based on magnetic induction,” IEEE Trans. Indust. Electr. 52 (2), (Apr. 2005) pp. 585594.Google Scholar
32.Cobos, S., Ferre, M., Sànchez-Uràn, M. A. and Ortego, J., “Constraints for Realistic Hand Manipulation,” PPRESENCE 2007, The 10Th Annual International Workshop on Presence, Barcelona Spain (Oct. 1998).Google Scholar
33.Mousavi, M., Appendino, S., Battezzato, A., Chen, F. Chen, Favetto, A. and Pescarmona, F., “Stiffness of an EVA Glove: Objective Evaluation and Testing Procedures,” Proceedings of the 12th Symposium on Advanced Space Technologies in Robotics and Automation (ASTRA) (May 15–17, 2013).Google Scholar