Published online by Cambridge University Press: 07 June 2013
A novel path planner is presented for the local path planning of a single robot (represented with R) in a complicated dynamic environment. Here a series of attractive points are computed based on attractive segments for guiding R to move along a shorter path. Each attractive segment is obtained by using the full environmental knowledge and will be used for several sampling times in general. A motion controller, which is designed based on artificial moments and a robot model that has a principal motion direction line(PMDline), makes R move closely to attractive points while away from obstacles. Attractive and repulsive moments are designed, which only make R's PMDline face toward attractive points and opposite to obstacles in general, as in most cases, R will move along its PMDline with its full speed. Because of the guidance of attractive points and R's full-speed motion, the global convergence is guaranteed. Simulations indicate that the proposed path planner meets the requirements of real-time property while can optimize R's traveling path.