Article contents
Design, modeling, and testing of a soft actuator with variable stiffness using granular jamming
Published online by Cambridge University Press: 07 February 2022
Abstract
Soft robots combine the load-bearing capability of rigid material with the resilience, shape-shifting capabilities of soft materials. This paper presents a novel soft actuator with stiffness variation using particulate jamming technology. We design a hybrid composite structure consisting of driving layer and jamming layer. The driving layer with the arc air chamber aim to achieve large bending deformation. A membrane containing particles is integrated with driving layer to module its stiffness. The influence factors of stiffness variation were analyzed from energy of point of view. The dependence of granular attributes on the stiffness of the actuator was studied. Furthermore, we illustrated influence of stiffness changes on the kinematic and dynamic performance of the soft actuator. The experimental results showed these performance indexes are twofold. On the one hand, the structural parameters have significant effect on the bending angle, but on the other hand they have little effect on the end force. We found that flow resistance inside air chamber results in bending morphology variation. The dynamic response subjected to a square-wave air pressure was analyzed to exhibit the actuator’s transient and steady vibration behavior. The actuator with greater stiffness has faster responsiveness, but smaller range of motion. These conclusions are helpful to adjust the stiffness behavior and to improve motion performance.
- Type
- Research Article
- Information
- Copyright
- © The Author(s), 2022. Published by Cambridge University Press
References
A correction has been issued for this article:
- 9
- Cited by
Linked content
Please note a has been issued for this article.