Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-10T23:47:23.515Z Has data issue: false hasContentIssue false

Designing robot grippers: optimal edge contacts for part alignment

Published online by Cambridge University Press:  01 May 2006

Mike Tao Zhang*
Affiliation:
AzFSM (Fab 12/22/32) Industrial Engineering, Intel Corporation, Mail Stop: OC2-254, 4500 S. Dobson Road, Chandler, AZ 85248, USA
Ken Goldberg
Affiliation:
Department of Industrial Engineering and Operations Research and Department of Electrical Engineering and Computer Science, University of California, Berkeley, CA 94720-1777, USA
*
*Corresponding author. E-mail: mike.zhang@intel.com

Summary

Although parallel-jaw grippers play a vital role in automated manufacturing, gripper surfaces are still designed by trial-and-error. This paper presents an algorithmic approach to designing gripper jaws that mechanically align parts in the vertical (gravitational) plane. We consider optimal edge contacts, based on modular trapezoidal segments that maximize contact between the gripper and the part at its desired final orientation. Given the n-sided 2D projection of an extruded convex polygonal part, mechanical properties such as friction and center of mass, and initial and desired final orientations, we present an O(n3 log n) numerical algorithm to design optimal gripper jaws. We also present an O(n log n) algorithm to compute tolerance classes for these jaws, and report on an online implemented version of the algorithm and physical experiments with the jaws it designed. This paper extends earlier results that generated optimal point contacts [M. T. Zhang and K. Goldberg, “Gripper point contacts for part alignment,” IEEE Trans. Robot. Autom.18(6), 902–910 (2002)].

Type
Article
Copyright
Copyright © Cambridge University Press 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Abell, T. and Erdmann, M., “Stably supported rotations of a planar polygon with two frictionless contacts,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots Systems, Pittsburgh, PA 1995 pp. 411418.Google Scholar
2.Akella, S. and Mason, M.. “Orienting toleranced polygonal parts,” Int. J. Robot. Res. 19 (12), 11471170 2000.CrossRefGoogle Scholar
3.Anderson, C., Zhuang, Y. and Goldberg, K.. “Fixturenet II: Interactive redesign and force visualization on the Web (CD),” Proceedings of the ASME Design Engineering Technical Conference, Sacramento, CA 1997.Google Scholar
4.Berretty, R.-P., Goldberg, K., Cheung, L., Overmars, M., Smith, G. and Van Der Stappen, A. F.. “Trap design for vibratory bowl feeders,” Proceedings of the IEEE International Conference on Robotics and Automation, Detroit, MI 1999, pp. 25582563.Google Scholar
5.Bicchi, A., “Hands for dexterous manipulation and robust grasping: A difficult road toward simplicity,” IEEE Trans. Robot. Autom. 16 (6), 652662 2000.CrossRefGoogle Scholar
6.Brown, S. and Wright, P., , A progress report on the manufacturing analysis service, an Internet-based reference tool,” J. Manuf. Syst. 17, 389398 1998.CrossRefGoogle Scholar
7.Brost, R. and Goldberg, K., “A complete algorithm for designing planar fixtures using modular components,” IEEE Trans. Robot. Autom. 12 (1), 3146 1999.CrossRefGoogle Scholar
8.Brost, R. and Peters, R., “Automatic design of 3-D fixtures and assembly pallets,” Int. J. Robot. Res. 17 (12), 12431281 1998.CrossRefGoogle Scholar
9.Causey, G. and Quinn, R., “Gripper design guidelines for modular manufacturing,” Proceedings of the IEEE International Conference on Robotics and Automation, Leuven, Belgium 1998, pp. 14531458.Google Scholar
10.Chen, J., Goldberg, K., Overmas, M., Halperin, D., Bohringer, K. and Zhuang, Y., “Shape tolerance in feeding and fixturing,” In: Robotics: The Algorithmic Perspective (Agarwal, P., Kavraki, L. and Mason, M., eds.) (A. K. Peters, Natick, MA, 1999.Google Scholar
11.Chui, W. and Wright, P., “A WWW computer integrated manufacturing environment for rapid prototyping and education,” J. Comput. Integr. Manuf. 12, 5460 1999.CrossRefGoogle Scholar
12.Donald, B., “Planning multistep error detection and recovery strategies,” Int. J. Robot. Res. 9 (1), 360 1990.CrossRefGoogle Scholar
13.Goemans, Onno C., Goldberg, Ken and Frank Van DerStappen, A., “Blades: A new class of geometric primitives for feeding 3D parts on vibratory tracks,” Proceedings of the IEEE International Conference on Robotics and Automation, Orlando, FL 2006.Google Scholar
14.Grupen, R., Henderson, T. and McCammon, I., “A survey of general-purpose manipulation,” Int. J. Robot. Res. 8 (1), 3862 1989.CrossRefGoogle Scholar
15.Joskowicz, L., Sacks, E. and Srinivasan, V.. “Kinematic tolerance analysis,” Comput.-Aided Des. 29 (2), 147157 1996.CrossRefGoogle Scholar
16.Larson, J. and Cheng, H., “Object-oriented CAM design through the Internet,” J. Intell. Manuf. 11, 515534 2000.CrossRefGoogle Scholar
17.Latombe, J.-C., Wilson, R. and Cazals, F.. “Assembly sequencing with toleranced parts,” Comput.-Aided Des. 29 (2), 159174 1997.CrossRefGoogle Scholar
18.Lynch, K., “Toppling manipulation,” Proceedings of the IEEE International Conference on Robotics and Automation, Detroit, MI 1999, pp. 25512557.Google Scholar
19.Mason, M. and Salisbury, J.. Robotic Hands and the Mechanics of Manipulation (MIT Press, Cambridge, MA, 1985.Google Scholar
20.Mason, M., “Two graphical methods for planar contact problems,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots Systems, Osaka, Japan 1991, pp. 443448.Google Scholar
21.Mishra, B., Schwartz, J. and Sharir, M., “On the existence and synthesis of multifinger positive grips,” Algorithmica 2 (4), 541558 1987.CrossRefGoogle Scholar
22.Murray, R., Li, Z. and Sastry, S.. A Mathematical Introduction to Robotic Manipulation (CRC, Boca Raton, FL, 1994.Google Scholar
23.Okamura, A., Smaby, N. and Cutkosky, M., “An overview of dexterous manipulation,” Proceedings of the IEEE International Conference on Robotics and Automation, San Francisco, CA 2000, pp. 255262.Google Scholar
24.Piccinocchi, S., Ceccarelli, M., Piloni, F. and Bicchi, A., “Interactive benchmark for planning algorithms on the Web,” Proceedings of the IEEE International Conference on Roboticss and Automation, Albuquerque, NM 1997, pp. 399404.CrossRefGoogle Scholar
25.Preparata, F. and Hong, S.. “Convex hulls of finite sets of points in two and three dimensions,” Commun. ACM 20 (2), 8793 1977.CrossRefGoogle Scholar
26.Requicha, A., “Mathematical definition of tolerance specifications,” Manuf. Rev. 6 (4), 269274 1993.Google Scholar
27.Roy, U., Liu, C. and Woo, T., “Review of dimensioning and tolerancing: Representation and processing,” Comput.-Aided Des. 23 (7), 466483 1991.CrossRefGoogle Scholar
28.Shimoga, K., “Robot grasp synthesis algorithms: A survey,” Int. J. Robot. Res. 15 (3), 230266 1996.CrossRefGoogle Scholar
29.Smith, C. and Wright, P., “CyberCut: A World Wide Web based design to fabrication tool,” J. Manuf. Syst. 15, 432442 1996.CrossRefGoogle Scholar
30.Smith, G., Lee, E., Goldberg, K., Bohringer, K. and Craig, J.. “Computing parallel-jaw grips,” Proceedings of the IEEE International Conference on Robotics and Automation, Detroit, MI 1999, pp. 18971903.Google Scholar
31.Van Der Stappen, A. F., Wentink, C. and Overmars, M., “Computing immobilizing grasps of polygonal parts,” Int. J. Robot. Res. 19 (5), 467479 2000.CrossRefGoogle Scholar
32.Katwyk, K. and Cheng, H., “Xlinkage: A Web-based analysis and simulation tool for planar mechanical systems (CD),” Proceedings of the ASME Design Engineering Technical Conference, Sacramento, CA 1997.Google Scholar
33.Voelcker, H., “A current perspective on tolerancing and metrology,” Manuf. Rev. 6 (4), 258268 1993.Google Scholar
34.Wagner, R., Castanotto, G. and Goldberg, K., “FixtureNet: Interactive computer-aided design via the World Wide Web,” Int. J. Hum.-Comput. Stud. 46, 773788 1997.CrossRefGoogle Scholar
35.Yap, C. and Chang, E., “Issues in the metrology of geometric tolerancing,” In: Algorithms for Robotic Motion and Manipulation (Laumond, J.-P. and Overmas, M., eds.) (A. K. Peters, Natick, MA, 1997, pp. 393400.Google Scholar
36.Zhang, M. T. and Goldberg, K., “Design of robot gripper jaws based on trapezoidal modules” Proceedings of the IEEE International Conference on Robotics and Automation, Seoul, Korea 2001, pp. 10651070.Google Scholar
37.Zhang, M. T., Cheung, L. and Goldberg, K.. “Shape tolerance for robot gripper jaws,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots Systems, Wailea, HI 2001, pp. 17821787.Google Scholar
38.Zhang, M. T., Goldberg, K., Smith, G., Berretty, R. P. and Overmars, M., “Pin design for part feeding,” Robotica 19 (6), 695702 2001.CrossRefGoogle Scholar
39.Zhang, M. T., “Optimal design of self-aligning robot gripper jaws,” Ph.D. Dissertation (Department of Industrial Engineering and Operations Research, University of California, Berkeley, 2001.Google Scholar
40.Zhang, M. T. and Goldberg, K., “Gripper contacts for part alignment,” IEEE Trans. Robot. Autom. 18 (6), 902910 2002.CrossRefGoogle Scholar
41.Zhang, M. T. and Goldberg, K., “Computer-aided gripper jaw design on the Internet,” ASME Trans. J. Comput. Inf. Sci. Eng., 4 (1), 4348 (2004).CrossRefGoogle Scholar