Published online by Cambridge University Press: 15 October 2014
A distributed control mechanism for ground moving nonholonomic robots is proposed. It enables a group of mobile robots to autonomously manage formation shapes while navigating through environments with obstacles. The mechanism consists of two stages, with the first being formation control that allows basic formation shapes to be maintained without the need of any inter-robot communication. It is followed by obstacle avoidance, which is designed with maintaining the formation in mind. Every robot is capable of performing basic obstacle avoidance by itself. However, to ensure that the formation shape is maintained, formation scaling is implemented. If the formation fails to hold its shape when navigating through environments with obstacles, formation morphing has been incorporated to preserve the interconnectivity of the robots, thus reducing the possibility of losing robots from the formation.
The algorithm has been implemented on a nonholonomic multi-robot system for empirical analysis. Experimental results demonstrate formations completing an obstacle course within 12 s with zero collisions. Furthermore, the system is capable of withstanding up to 25% sensor noise.