Published online by Cambridge University Press: 09 March 2009
The paper presents an educational system for teaching and research in robotics which consists of a manipulator, controller and a PC compatible host computer. The advanced design of host-computer user-interface software makes the system very suitable for teaching. It allows the user not only to follow the system states but also to change the control structure on-line. In the first part of this paper the architecture of the system, window-oriented user interface, specially designed robot language and several build-in students lessons will be described as well as the data acquisition system and advanced graphical capabilities.
In the second part of this paper the executive controller architecture is described. Besides the manipulator control function and IO operations, the controller supports communication with the host-computer. The controller is programmable, i.e. it executes various tasks within user-defined and build-in students lessons. By the use of simple host-computer commands the controller can execute various algorithms both for trajectory generation and dynamically compensated digital servo control. The dynamic model components in the feed-forward and feed-back control loop can be selectively included and changed during the manipulator's motion. Experimental results with a 4-link educational robot are presented.