Article contents
Dynamic Characteristics of Balanced Robotic Manipulators with Joint Flexibility
Published online by Cambridge University Press: 09 March 2009
Summary
The mass balancing of robotic manipulators has been shown to have favorable effects on the dynamic characteristics. In actual practice, however, since conventional manipulators have flexibility at their joints, the improved dynamic properties obtainable for rigid manipulators may be influenced by those joint flexibilities. This paper investigates the effects of the joint flexibility on the dynamic properties and the controlled performance of a balanced robotic manipulator. The natural frequency distribution and damping characteristics were investigated through frequency response analyses. To evaluate the dynamic performance a series of simulation studies of the open loop dynamics were made for various trajectories, operating velocities, and joint stiffnesses. These simulations were also carried out for the balanced manipulator with a PD controller built-in inside motor control loop. The results show that, at low speed, the joint flexibility nearly does not influence the performance of the balanced manipulator, but at high speed it tends to render the balanced manipulator susceptible to vibratory motion and yields large joint deformation error.
- Type
- Research Article
- Information
- Copyright
- Copyright © Cambridge University Press 1992
References
- 1
- Cited by