Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-10T17:31:57.719Z Has data issue: false hasContentIssue false

Dynamic simulation of a parallel robot: Coulomb friction and stick–slip in robot joints

Published online by Cambridge University Press:  07 April 2009

Nidal Farhat*
Affiliation:
Departamento de Ingeniería Mecánica y de Materiales, Universidad Politécnica de Valencia, Spain
Vicente Mata
Affiliation:
Departamento de Ingeniería Mecánica y de Materiales, Universidad Politécnica de Valencia, Spain
Álvaro Page
Affiliation:
Departamento de Física Aplicada, Universidad Politécnica de Valencia, Spain
Miguel Díaz-Rodríguez
Affiliation:
Departamento de Tecnología y Diseño, Facultad de Ingeniería, Universidad de Los Andes, Venezuela
*
*Corresponding author. E-mail: nifar@doctor.upv.es

Summary

Dynamic simulation in robotic systems can be considered as a useful tool not only for the design of both mechanical and control systems, but also for planning the tasks of robotic systems. Usually, the dynamic model suffers from discontinuities in some parts of it, such as the use of Coulomb friction model and the contact problem. These discontinuities could lead to stiff differential equations in the simulation process. In this paper, we present an algorithm that solves the discontinuity problem of the Coulomb friction model without applying any normalization. It consists of the application of an external switch that divides the integration interval into subintervals, the calculation of the friction force in the stick phase, and further improvements that enhance its stability. This algorithm can be implemented directly in the available commercial integration routines with event-detecting capability. Results are shown by a simulation process of a simple 1-DoF oscillator and a 3-DoF parallel robot prototype considering Coulomb friction in its joints. Both simulations show that the stiffness problem has been solved. This algorithm is presented in the form of a flowchart that can be extended to solve other types of discontinuity.

Type
Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Piedbœuf, J. C., de Carufel, J. and Hurteau, R., “Friction and stick–slip in robots: Simulation and experimentation,” Multibody Syst. Dyn. 4, 341354 (2000).CrossRefGoogle Scholar
2.Dahl, P., A Solid Friction Model (The Aerospace Corporation, El Segundo, CA, 1968).CrossRefGoogle Scholar
3.Haessig, D. A. and Friedland, B., “On the modelling and simulation of friction,” J. Dyn. Syst. Meas. Control Trans. ASME 113 (3), 354362 (1991).CrossRefGoogle Scholar
4.Canudas-de-Wit, C., Olsson, H., Aström, K. J. and Lischinsky, P., “A new model for control of systems with friction,” IEEE Trans. Automat. Control 40 (3), 419425 (1995).CrossRefGoogle Scholar
5.Kozlowski, K., Modelling and Identification in Robotics (Springer-Verlag, London, 1998).CrossRefGoogle Scholar
6.Khalil, W. and Dombre, E.. Modeling, Identification and Control of Robots (Taylor & Francis, London, 2002).Google Scholar
7.Grotjahn, M., Heimann, B. and Abdellatif, H., “Identification of friction and rigid-body dynamics of parallel kinematic structures for model-based control,” Multibody Syst. Dyn. 11 (3), 273294 (2004).CrossRefGoogle Scholar
8.Mata, V., Benimeli, F., Farhat, N. and Valera, A., “Dynamic parameter identification in industrial robots considering physical feasibility,” J. Adv. Rob. 19 (1), 101120 (2005).CrossRefGoogle Scholar
9.Armstrong-Helouvry, B., Dupont, P. and Wit, C. C. De, “A survey of models, analysis tools and compensation methods for the control of machines with friction,” Automatica 30 (7), 10831138 (1994).CrossRefGoogle Scholar
10.Olsson, H., Åström, K. J., Canudas-de-Wit, C., and Lischinsky, P., “Friction models and friction compensation,” Eur. J. Control 4 (3), 176195 (1998).CrossRefGoogle Scholar
11.Eich Soellner, E. and Führer, C., Numerical Methods in Multibody Dynamics (B. G. Teubner Stuttgart, Germany, 1998).CrossRefGoogle Scholar
12.Sextro, W., Dynamical Contact Problems with Friction: Models, Methods, Experiments, and Applications (Springer-Verlag, Berlin, 2002).CrossRefGoogle Scholar
13.Quinn, D. D., “A new regularization of Coulomb friction,” J. Vibration Acoust. 126 (3), 391397 (2004).CrossRefGoogle Scholar
14.Leine, R. I., Van Campen, D. H. and Van De Vrande, B. L., “Bifurcations in nonlinear discontinuous systems,” Nonlinear Dyn. 23 (2), 105164 (2000).CrossRefGoogle Scholar
15.Karnopp, D., “Computer simulation of slip–stick friction in mechanical dynamic systems,” J. Dyn. Syst. Meas. Control 107 (1), 100103 (1985).CrossRefGoogle Scholar
16.Hensen, R. H. A., van de Molengraft, M. J. G. and Steinbuch, M., “Friction induced hunting limit cycles: A comparison between the LuGre and switch friction model,” Automatica 39 (12), 21312137 (2003).CrossRefGoogle Scholar
17.Van de Vrande, B. L., Campen, D. H. van, Kraker, B. d. and Eindhoven, , “Some Aspects of the Analysis of Stick–Slip Vibrations with an Application to Drillstrings,” Proceedings of ASME Design Engineering Technical Conference, 16th Biennial Conference on Mechanical Vibration and Noise, Sacramento (1997).CrossRefGoogle Scholar
18.Altpeter, F., Friction Modeling, Identification and Compensation, vol. 166 (Mechanical Engineering Department, Federal Polytechnic of Lausanne, Valais, 1999).Google Scholar
19.Pfeiffer, F. and Glocker, C., Multibody Dynamics with Unilateral Contacts (John Wiley & Sons, New York, 1996).CrossRefGoogle Scholar
20.Mata, V., Provenzano, S., Valero, F. and Cuadrado, J. I., “Serial-robot dynamics algorithms for moderately large numbers of joints,” Mech. Mach. Theory 37 (8), 739755 (2002).CrossRefGoogle Scholar
21.Udwadia, F. and Kalaba, R., “The explicit Gibbs–Appell equation and generalized inverse forms,” Q. Appl. Math. 56 (2), 277288 (1998).CrossRefGoogle Scholar
22.Amirouche, F. M. L., Computational Methods in Multibody Dynamics (Prentice-Hall, New Jersey, 1992).Google Scholar
23.García de Jalón, J. and Bayo, E., Kinematic and Dynamic Simulation of Multibody Systems: The Real-Time Challenge (Springer-Verlag, New York, 1994).CrossRefGoogle Scholar
24.Leine, R. I., Campen, D. H. V. and Kraker, A. D., “Stick–slip vibrations induced by alternate friction models,” Nonlinear Dyn. 16 (1), 4154 (1998).CrossRefGoogle Scholar
25.NAG, The NAG Fortran Library Manual, Mark 20 (The Numerical Algorithms Group Ltd., Oxford, UK, 2001).Google Scholar
26.Farhat, N., Mata, V., Page, Á. and Valero, F., “Identification of dynamic parameters of a 3-DOF RPS parallel manipulator,” Mech. Mach. Theory 43 (1), 117 (2008).CrossRefGoogle Scholar