Published online by Cambridge University Press: 09 March 2009
The dynamics of “simple, redundant robots” are developed. A “redundant” robot is a robot whose degrees of freedom are greater than those needed to perform a given kinetmatic task. A “simple” robot is a robot with all joints being revolute joints with axes perpendicular or parallel to the arm segments. A general formulation, and a solution algorithm, for the “inverse kinematics problem” for such systems, is presented. The solution is obtained using orthogonal complement arrays which in turn are obtained from a “zero-eigenvalues” algorithm. The paper concludes with an assertion that this solution, called the “natural dynamics solution,” is optimal in that it requires the least energy to drive the robot.