Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T11:36:19.785Z Has data issue: false hasContentIssue false

The effects of swing-leg retraction on running performance: analysis, simulation, and experiment

Published online by Cambridge University Press:  28 May 2014

J. G. Daniël Karssen
Affiliation:
Department of BioMechanical Engineering, Delft University of Technology, Mekelweg 2, Delft, The Netherlands
Matt Haberland*
Affiliation:
Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
Martijn Wisse
Affiliation:
Department of BioMechanical Engineering, Delft University of Technology, Mekelweg 2, Delft, The Netherlands
Sangbae Kim
Affiliation:
Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
*
*Corresponding author. E-mail: mdhaber@mit.edu

Summary

Using simple running models, researchers have argued that swing-leg retraction can improve running robot performance. In this paper, we investigate whether this holds for a more realistic simulation model validated against a physical running robot. We find that swing-leg retraction can improve stability and disturbance rejection. Alternatively, swing-leg retraction can simultaneously reduce touchdown forces, slipping likelihood, and impact energy losses. Surprisingly, swing-leg retraction barely affected net energetic efficiency. The retraction rates at which these effects are the greatest are strongly model-dependent, suggesting that robot designers cannot always rely on simplified models to accurately predict such complex behaviors.

Type
Articles
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Raibert, M., Blankespoor, K., Nelson, G., Playter, R. and the BigDog Team, “Bigdog, the Rough-Terrain Quadruped Robot,” Proceedings of the 17th World Congress, (2008) pp. 10823–10825.Google Scholar
2. Saranli, U., Buehler, M. and Koditschek, D. E., “Rhex: A simple and highly mobile hexapod robot,” Int. J. Robot. Res. 20 (7), 616631 (2001).Google Scholar
3. Kim, S., Clark, J. E. and Cutkosky, M. R., “iSprawl: Design and tuning for high-speed autonomous open-loop running,” Int. J. Robot. Res. 25 (9), 903912 (2006).Google Scholar
4. Müller, R. and Blickhan, R., “Running on uneven ground: Leg adjustments to altered ground level,” Hum. Mov. Sci. 29 (4), 578589 (2010).Google Scholar
5. Blum, Y., Lipfert, S. W., Rummel, J. and Seyfarth, A., “Swing leg control in human running,” Bioinspiration Biomimetics 5, 026006 (2010).Google Scholar
6. Seyfarth, A. and Geyer, H., “Natural Control of Spring-Like Running: Optimized Self-Stabilization,” Proceedings of the Fifth International Conference on Climbing and Walking Robots (2002) pp. 81–85.Google Scholar
7. Raibert, M. H., Brown, H. B. Jr., Chepponis, M., Koechling, J. and Hodgins, J. K., “Dynamically stable legged locomotion,” Technical Report, DTIC Document (1989). URL: http://www.dtic.mil/cgi-bin/GetTRDoc?Location=U2&doc=GetTRDoc.pdf&AD=ADA225713. Accessed February 13, 2014.Google Scholar
8. Hobbelen, D. G. E. and Wisse, M., “Limit Cycle Walking,” In: Humanoid Robots, Human-like Machines Hackel, M, ed.) (I-Tech, Vienna, Austria, 2007a) pp. 277294.Google Scholar
9. Asano, F., “Effects of Swing-Leg Retraction and Mass Distribution on Energy-Loss Coefficient in Limit Cycle Walking,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 2009 (IROS 2009) (IEEE, New York, 2009) pp. 32143219.Google Scholar
10. Wisse, M., Atkeson, C. G. and Kloimwieder, D. K., “Dynamic Stability of a Simple Biped Walking System with Swing Leg Retraction,” In: Fast Motions in Biomechanics and Robotics, Diehl, Moritz and Mombaur, Katja, eds.), Lecture Notes in Control and Information Sciences, vol. 340 (Springer, Berlin, Germany, 2006) pp. 427443. ISBN 978-3-540-36118-3. URL: http://dx.doi.org/10.1007/978-3-540-36119-0_21.Google Scholar
11. Hobbelen, D. G. E. and Wisse, M., “Swing-leg retraction for limit cycle walkers improves disturbance rejection,” IEEE Trans. Robot. 24 (2), 377389 (2008).Google Scholar
12. Seyfarth, A., Geyer, H. and Herr, H., “Swing-leg retraction: A simple control model for stable running,” J. Exp. Biol. 206 (15), 25472555 (2003).Google Scholar
13. Ernst, M., Geyer, H. and Blickhan, R., “Spring-Legged Locomotion on Uneven Ground: A Control Approach to Keep the Running Speed Constant,” International Conference on Climbing and Walking Robots (2009) pp. 639–644.Google Scholar
14. Karssen, J. G. D., Haberland, M., Wisse, M. and Kim, S., “The Optimal Swing-Leg Retraction Rate for Running,” Proceedings of IEEE International Conference on Robotics and Automation (IEEE, New York, 2011) pp. 40004006.Google Scholar
15. Peuker, F., Seyfarth, A. and Grimmer, S., “Inheritance of SLIP Running Stability to a Single-Legged and Bipedal Model with Leg Mass and Damping,” 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics, 2012 (BioRob) (IEEE, New York, 2012) pp. 395400.Google Scholar
16. Daley, M. A. and Usherwood, J. R., “Two explanations for the compliant running paradox: Reduced work of bouncing viscera and increased stability in uneven terrain,” Biol. Lett. 6 (3), 418421 (2010).Google Scholar
17. Raibert, M. H., Legged Robots that Balance (MIT Press, Cambridge, MA, 1986).Google Scholar
18. Haberland, M., Karssen, J. G. D., Kim, S. and Wisse, M.The Effect of Swing Leg Retraction on Running Energy Efficiency,” Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IEEE, New York, 2011) pp. 39573962.Google Scholar
19. Blickhan, R., “The spring-mass model for running and hopping,” J. Biomech. 22 (11), 12171227 (1989).Google Scholar
20. Schwind, W. J. and Koditschek, D. E., “Characterization of Monoped Equilibrium Gaits,” In: Proceedings of IEEE International Conference on Robotics and Automation, vol. 3 (IEEE, New York, 1997) pp. 19861992.Google Scholar
21. Ghigliazza, R. M., Altendorfer, R., Holmes, P. and D. Koditschek, “A simply stabilized running model,” SIAM Revi. 47 (3), 519549 (2005). ISSN . URL: http://www.jstor.org/stable/20453666.Google Scholar
22. Poulakakis, I. and Grizzle, J. W., “Modeling and Control of the Monopedal Robot Thumper,” Proceedings of IEEE International Conference on Robotics and Automation (IEEE, New York, 2009) pp. 33273334.Google Scholar
23. Blickhan, R. and Full, R. J., “Similarity in multilegged locomotion: Bouncing like a monopode,” J. Comp. Physiol. Neuroethol. Sens. Neural. Behav. Physiol. 173 (5), 509517 (1993).Google Scholar
24. Full, R. J. and Koditschek, D. E., “Templates and anchors: Neuromechanical hypotheses of legged locomotion on land,” J. Exp. Biol. 202 (23), 33253332 (1999).Google Scholar
25. van der Linde, R. Q. and Schwab, A. L., “Multibody Dynamics B” (2011). URL: http://bicycle.tudelft.nl/schwab/wb1413spring2013/MultibodyDynamicsB.pdf (accessed May 8, 2014).Google Scholar
26. Haberland, M., “Extracting Principles from Biology for Application to Running Robots” Ph.D. Thesis (Massachusetts Institute of Technology, 2014).Google Scholar
27. McGeer, T., “Passive bipedal running,” Proc. R. Soc. 240 (1297), 107134 (1990).Google Scholar
28. Hobbelen, D. G. E. and Wisse, M., “A disturbance rejection measure for limit cycle walkers: The gait sensitivity norm,” IEEE Trans. Robot. 23 (6), 12131224 (2007).Google Scholar
29. Bruijn, S. M., Meijer, O. G., Beek, P. J. and Van Dieën, J. H., “Assessing the stability of human locomotion: A review of current measures,” J. R. Soc. Interface 10 (83) (2013).Google Scholar
30. Jindrich, D. L. et al., “Dynamic stabilization of rapid hexapedal locomotion,” J. Exp. Biol. 205 (18), 28032823 (2002).Google Scholar
31. Karssen, J. G. D. and Wisse, M., “Running with improved disturbance rejection by using non-linear leg springs,” Int. J. Robot. Res. 30 (13), 15851595 (2011).Google Scholar
32. McGeer, T., “Passive dynamic walking,” Int. J. Robot. Res. 9 (2), 6282 (1990).Google Scholar
33. Pratt, J., Chew, C. M., Torres, A., Dilworth, P. and Pratt, G., “Virtual model control: An intuitive approach for bipedal locomotion,” Int. J. Robot. Res. 20 (2), 129 (2001).Google Scholar
34. Wisse, M., Schwab, A. L., van der Linde, R. Q. and van der Helm, F. C. T., “How to keep from falling forward: Elementary swing leg action for passive dynamic walkers,” IEEE Trans. Robot. 21 (3), 393401 (2005).Google Scholar
35. Blanchard, B. S., Verma, D. and Peterson, E. L., Maintainability: A Key to Effective Serviceability and Maintenance Management, vol. 13 (Wiley-Interscience, Hoboken, NJ, 1995).Google Scholar